本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。
实验环境:
本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。
一,验证辛钦大数定理
由辛钦大数定理描述为:
辛钦大数定理(弱大数定理) 设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,有
即
实验思路:
实验产生的随机变量Xi服从均匀分布与(0-1)分布,即X~U(0,1)或X~b(1,0.5)首先随机产生5000(0,1)内,已知X服从均匀分布或(0-1)分布,所以均值E(X)=(a+b)/2=0.5。且随机变量的方差相等,统计样本容量为n的样本算术平均值,n以10为步长线性增加,画出()的图像,将其与y=0.5的图像对比,可得,当n越来越大时,
趋向于均值E(X)=0.5,即
实验画得如下图一:
图一
由图可看出,当数据点足够多时
实验程序如下,程序已经加上注释:
import java.awt.Color;
import java.util.Random;
import java.util.SortedSet;
import java.util.TreeSet;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.category.DefaultCategoryDataset;
import org.jfree.data.function.Function2D;
import org.jfree.data.function.NormalDistributionFunction2D;
import org.jfree.data.general.DatasetGroup;
import org.jfree.data.general.DatasetUtilities;
import org.jfree.data.xy.XYDataset;
import org.jfree.data.xy.XYSeries;
import org.jfree.data.xy.XYSeriesCollection;
public class KhinchinBigDataTheorem {
/*********************************
*样本点集
********************************/
private static XYSeriesCollection dataset=new XYSeriesCollection();
/**********************************
* getXYSeriesCollection()
* 获得样本点XY坐标点集XYSeriesCollection
* @return
*********************************/
public static XYSeriesCollection getXYSeriesCollection(){
XYSeries series= new XYSeries("Khinchin");
int sampleSize=5000; //验证样本容量
int bin=10; //以步长为bin进行样本概率统计
int poltSize=sampleSize/bin; //样本分成的区间数
double[] sampleProbability=new double[poltSize]; //每个区间内出现的点得数量的矩阵
double[] XAxis=new double[poltSize]; //每个区间所采取的Xi(X轴坐标点)的矩阵
for (int i = 0; i < XAxis.length; i++) {
sampleProbability[i]=0;
XAxis[i]=0;
}
/***************************************************
* 产生500000个(0,1)内均匀分布与(0-1)分布的样本点
* 画出样本数量从少到多的算术平均值趋向于均值的差距
***************************************************/
double u=0.5; //样本服从的均值
double[] samplePoints=new double[sampleSize]; //分布的样本点
int su=0;
for (int i = 0; i < samplePoints.length; i++) {
//交替产生均匀分布与(0-1)分布样本点
if (i%2==0) {
samplePoints[i]=new Random().nextDouble();
}else {
samplePoints[i]=generator(0.5);
}
}
double sum=0;
for (int i = 0; i < samplePoints.length; i++) {
sum+=samplePoints[i];
if (i%bin==0) {
XAxis[i/bin]=i;
sampleProbability[i/bin]=sum/(i+1);
//System.out.println(sampleProbability[i/bin]);
}
}
for (int i = 0; i < poltSize ; i++) {
series.add(XAxis[i], sampleProbability[i]);
}
dataset.addSeries(series);
return dataset;
}
/**********************************************
* 产生概率为0.5的(0-1)分布点
* @param p
* @return
**********************************************/
public static int generator(double p){
Random random=new Random();
double g=random.nextDouble();
int i=0;
if(g<p){
i=1;
}else {
i=0;
}
return i;
}
public XYSeriesCollection dataset1;
public JFreeChart chart;
public XYPlot plot;
public KhinchinBigDataTheorem() {
//KhinchinBigDataTheorem centerLimit=new KhinchinBigDataTheorem();
dataset1=getXYSeriesCollection();
//获取样本数据集
XYSeriesCollection dataset=new XYSeriesCollection();
XYSeries series= new XYSeries("0.5 Line");
for (int i = 0; i < 500; i++) {
series.add(i*10.0, 0.5);
}
dataset.addSeries(series);
chart = ChartFactory.createXYLineChart("MultiAxis", "X axis",
"First Y Axis", dataset1, PlotOrientation.VERTICAL, true, true,
false);
plot = chart.getXYPlot();
plot.setDataset(1, dataset);
XYLineAndShapeRenderer render2 = new XYLineAndShapeRenderer();
render2.setSeriesPaint(0, Color.BLUE);
plot.setRenderer(1, render2);
}
public static void main(String[] agrs) {
KhinchinBigDataTheorem obj = new KhinchinBigDataTheorem();
ChartFrame frame = new ChartFrame("多坐标轴", obj.chart);
frame.pack();
frame.setVisible(true);
}
}