Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
这是楼教主出的经典题目啊~~~不A别后悔呦^_^
题意:给个N*N的矩阵,所有元素初始化为零,且该矩阵里的元素只能有0,1。有两个操作——改变和查询,改变是改变一个指定的矩阵(会给出左上角和右下角的坐标)里的
所有元素,即0变为1,1变为0。查询是查询矩阵中某个元素(会给出坐标)的值。
心得:细节没注意,TLE到吐血!!!最开始也想到了方法,但是到后来写出来的时候一直TLE,郁闷。。。后来一看好多小细节!比如说读取操作类型的时候,最好不要直接开一个char变量f然后用%c读入,这样很容易出问题,可以开一个字符数组f[4]用%s读入,判断的时候用f[0]去比较即可。
分析:
思路一:直接按要求改变元素的值,最后输出即可。不过此时的sum()要有所改变,不是加了,而是抑或。change()里面,取反时可以用‘ !’取反,也可以&1。
详见代码1
思路二:由于初始所有元素均为0,则可用sum()记录每个元素改变的次数,只需%2判断即可确定每个元素的值。详见代码2
AC代码1:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define INF 0x7fffffff
using namespace std;
const int maxn = 1000 + 10;
int c[maxn][maxn];
int n;
int lowbit(int x)
{
return x & (-x);
}
void change(int x,int y)
{
int i,j;
for(i=x; i<=n; i+=lowbit(i))
for(j=y; j<=n; j+=lowbit(j))
c[i][j] = !c[i][j];
// c[i][j] ^= 1; //和上面的取反均可
}
int sum(int x,int y)
{
int ret = 0,i,j;
for(i=x; i>0; i-=lowbit(i))
for(j=y; j>0; j-=lowbit(j))
ret ^= c[i][j]; //此时不再是+,而是^
return ret;
}
int main()
{
int T,t,x1,y1,x2,y2;
char f[4];
scanf("%d",&T);
while(T--)
{
memset(c,0,sizeof(c));
scanf("%d%d",&n,&t);
while(t--)
{
scanf("%s",f);
if(f[0] == 'C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
change(x1,y1); //此处很容易错,把图画出来就很清晰了
change(x1,y2+1);
change(x2+1,y1);
change(x2+1,y2+1);
}
else
{
scanf("%d%d",&x1,&y1);
printf("%d\n",sum(x1,y1));
}
}
printf("\n");
}
return 0;
}
AC代码2:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define INF 0x7fffffff
using namespace std;
const int maxn = 1000 + 10;
int c[maxn][maxn];
int n;
int lowbit(int x)
{
return x & (-x);
}
void change(int x,int y)
{
int i,j;
for(i=x; i<=n; i+=lowbit(i))
for(j=y; j<=n; j+=lowbit(j))
c[i][j]++; //只需++,用来计改变的次数
}
int sum(int x,int y)
{
int ret = 0,i,j;
for(i=x; i>0; i-=lowbit(i))
for(j=y; j>0; j-=lowbit(j))
ret += c[i][j];
return ret;
}
int main()
{
int T,t,x1,y1,x2,y2;
char f[4];
scanf("%d",&T);
while(T--)
{
memset(c,0,sizeof(c));
scanf("%d%d",&n,&t);
while(t--)
{
scanf("%s",f);
if(f[0] == 'C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
change(x1,y1);
change(x1,y2+1);
change(x2+1,y1);
change(x2+1,y2+1);
}
else
{
scanf("%d%d",&x1,&y1);
printf("%d\n",sum(x1,y1)%2); //%2判断,确定元素的值
}
}
printf("\n");
}
return 0;
}