第4课 MMU内存管理单元

本文深入探讨MMU(内存管理单元)的核心作用,包括权限管理和地址映射,详细解释了虚拟地址到物理地址的转换过程及不同页表类型的应用。通过示例代码解析,展示了如何设置页表和启动MMU,确保程序安全高效地运行。

MMU主要作用:

1.权限管理:静止程序的非法访问,如访问内核空间,其他程序的地址空间

2.地址映射。MMU提供了虚拟地址到物理地址的映射(CPU使用虚拟地址)。测试,hello1,hello2.映射成连续的地址空间。方便的实现动态内存的管理。

CPU不关心发出的是物理地址还是虚拟地址。

链接地址(没有虚拟地址,和物理地址的概念,就是一个单纯的地址),而是从CPU的角度看到的,从CPU角度来说的。


//ARM体系架构与编程

//linux内核完全注释



虚拟地址->物理地址:

1.可以通过建立简单的映射表达式

2.可以通过建立表格(这个表格从术语上来说就叫"页表")

对于ARM架构有以下几种方式:

1.段页映射(一个段映射1M,4GB需要4096个表项)   

2.页映射(大页,小页,极小页)

0xA0000050 -> 0X56000050

以1M为起始对其的话就是

0xA0000050 ->0X56000000

第1个1M,0x0—0x0fffff,第2个M,0x100000-0x1fffff,依次类推……


步骤:



建立地址映射表格      本实验用虚拟地址点亮LED。 至少要建立3个表  0~4090->0-4096  0xB0004000~0x30004000   0xA0000050-0x56000050

表格地址告诉MMU

启动MMU



用汇编语言调用C语言之前,必须先初始化堆栈指针。

CPU一上电,是直接访问的物理地址。当MMU完成初始化,开始从MMU访问。




ARM CPU上的地址转换涉及3个概念:

虚拟地址VA


变换后的虚拟地址MVA

物理地址PA

没启动MMU,CPU,Cache,MMU,外设所有部件都是用的是物理地址

启动MMU后,CPU对外发出虚拟地址VA,VA被转换成MVA后供给Cache,MMU使用,MMU将MVA转换为PA,最后使用PA读写实际设备。

在这里:

CPU看到的用到的只是VA。

而Cache,MMU看到的只是MVA,利用MVA,转换成PA

实际设备看到的只是PA



if(VA<32M) then  硬件自动完成的。

MVA = VA | (PID < < 25)

else

MVA = VA


利用MVA的目的是为了减少进程切换的代价。


一旦在开启MMU之后,无论是CPU取指,还是CPU读写数据,使用的都是虚拟地址。


0b表示二进制。0x 16进制 0表示8进制






一、MMU地址转换:
1.首先弄清除为什么要使用MMU纳?MMU即内存管理单元,直白一点的讲,就像食堂的餐具,所有的学生一起吃饭时不够用,但食堂又不想再出资购买新的餐具(原因很明显:一方面要成本,另一方面又占地方。这就像增加内存一样),那么有没有解决办法?根据以往经验得知不可能全学校的学习一起都到食堂吃饭,于是食堂就找几个人负责餐具的管理(相当于MMU),他们一方面发放餐具,保证来的同学有餐具可用,另一方面又回收用完的餐具(这就相当于虚拟地址到物理地址之间建立了一个映射一样,内存还是那么多,但从任意单个程序角度都好像用不完一样)。当然如果有同学一个人拿好几套餐具肯定不允许的(这就相当于内存的权限检查)。MMU在地址转换过程中涉及到三种地址:(VA---Virtual Address,虚拟地址)---这个就相当于餐具存放的地方(大家都可以领到餐具)。CPU核心看到和用到的只是虚拟地址VA,至于VA如果去对应物理地址PA,CPU核心不理会,大家也不会去关心总共有多少餐具吧;(MVA---Modified Virtual Address,变换后的虚拟地址)---这个相当于放假的时候,人很少,只发餐具好了,用过的就不先回收了,节省人员了。Caches和MMU看不到VA,他们利用MVA转换得到PA,放假了回收餐具的人也不需要一直寻找用完的餐具;(PA---Physical Address,物理地址)---实际的餐具量,就那些。实际设备看不到VA、MVA,读写它们使用的是物理地址PA,同学们就餐一般会领到餐具。
2.虚拟地址到物理地址的转换过程。ARM使用页表来进行转换,S3C2410最多会用到两级页表,以段(Section,1M)的方式进行转换时只用到一级页表,以页(Page)的方式进行转换时用到两级页表。页的大小有3种:大页(64KB)、小页(4KB)和极小页(1KB)。本文只是以段地址转换过程为例来讲解一下,页的转换大同小异。
★首先有个页表基址寄存器(位置为协处理器CP15的寄存器C2),它里面写入的就是一级页表的地址,通过读取它就可以找到一级页表存放的起始位置。一级页表的地址是16K对齐(所以[13:0]为0,使用[31:14]存储页表基址)。一级页表使用4096个描述符来表示4GB空间,所以每个描述符对应1MB的虚拟地址,存储它对应的1MB物理空间的起始地址,或者存储下一级页表的地址。使用MVA[31:20]来索引一级页表(31-20一共12位,2^12=4096,所以是4096个描述符),得到一个描述符,每个描述符占4个字节。
★描述符最后两位为0B10时,即是段的方式映射。[31:20]为段基址,此描述符低20位填充0后就是一块1MB物理地址空间的起始地址。MVA[19:0]用来在这1MB空间中寻址。描述符的位[31:20]和MVA[19:0]构成了这个虚拟地址MVA对应的物理地址。以段的方式进行映射时,虚拟地址MVA到物理地址PA的转换过程如下:①页表基址寄存器位[31:14]和MVA[31:20]组成一个低两位为0的32位地址,MMU利用这个地址找到段描述符;②取出段描述符的位[31:20](段基址),它和MVA[19:0]组成一个32位的物理地址(这就是MVA对应的PA)。



全过程涉及到:

1.页表基址寄存器

2.段描述符

3.MVA




示例代码解析:
开启MMU,并将虚拟地址0xA0000000~0xA0100000映射到物理地址0x56000000~0x56100000(GPFCON物理地址为0x56000050,GPFDAT物理地址为0x56000054);将虚拟地址0xB0000000~0xB3FFFFFF映射到物理地址0x30000000~0x33FFFFFF。本示例以段的方式进行地址映射,只使用一级页表,通过上面内容可知一级页表使用4096个描述符来表示4G空间(每个描述符对应1MB),每个描述符占4字节,所以一级页表占16KB。使用SDRAM的开始16KB存放一级页表,所以剩下的内存开始地址就为0x30004000,这个地址最终会对应虚拟地址0xB0004000(所以代码运行地址为0xB0004000)。

★程序执行主要流程的示例代码。
.text
.global _start
_start:
    bl  disable_watch_dog                   @ 关闭WATCHDOG,否则CPU会不断重启
    bl  mem_control_setup                  @ 设置存储控制器以使用SDRAM
    ldr sp, =4096                                    @ 设置栈指针,以下是C函数调用前需要设好栈
    bl  copy_2th_to_sdram                   @ 将第二部分代码复制到SDRAM
    bl  create_page_table                     @ 设置页表
    bl  mmu_init                                      @ 启动MMU,启动以后下面代码都用虚拟地址
    ldr sp, =0xB4000000                       @ 重设栈指针,指向SDRAM顶端(使用虚拟地址)
    ldr pc, =0xB0004000                        @ 跳到SDRAM中继续执行第二部分代码
halt_loop:
    b   halt_loop

★设置页表。
void create_page_table(void)
{

/* 
* 用于段描述符的一些宏定义:[31:20]段基址,[11:10]AP,[8:5]Domain,[3]C,[2]B,[1:0]0b10为段描述符
*/ 
#define MMU_FULL_ACCESS     (3 << 10)   /* 访问权限AP */
#define MMU_DOMAIN          (0 << 5)    /* 属于哪个域 Domain*/
#define MMU_SPECIAL         (1 << 4)    /* 必须是1 */
#define MMU_CACHEABLE       (1 << 3)    /* cacheable C位*/
#define MMU_BUFFERABLE      (1 << 2)    /* bufferable B位*/
#define MMU_SECTION         (2)         /* 表示这是段描述符 */
#define MMU_SECDESC         (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | MMU_SECTION)
#define MMU_SECDESC_WB      (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | MMU_CACHEABLE | MMU_BUFFERABLE | MMU_SECTION)
#define MMU_SECTION_SIZE    0x00100000        /*每个段描述符对应1MB大小空间*/


    unsigned long virtuladdr, physicaladdr;
    unsigned long *mmu_tlb_base = (unsigned long *)0x30000000;        /*SDRAM开始地址存放页表*/
    
    /*
     * Steppingstone的起始物理地址为0,第一部分程序的起始运行地址也是0, 为了在开启MMU后仍能运行第一部分的程序, 将0~1M的虚拟地址映射到同样的物理地址
     */
    virtuladdr = 0;
    physicaladdr = 0;
    /*虚拟地址[31:20]用于索引一级页表,找到它对应的描述符,对应于(virtualaddr>>20)。段描述符中[31:20]保存段的物理地址,对应(physicaladdr & 0xFFF00000)*/
    *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC_WB;  //此处利用了指针的运算,指针+(段描述符)* sizeof(unsigned long)

    /*
     * 0x56000000是GPIO寄存器的起始物理地址,GPBCON和GPBDAT这两个寄存器的物理地址0x56000010、0x56000014, 为了在第二部分程序中能以地址0xA0000010、0xA0000014来操作GPBCON、GPBDAT,
     * 把从0xA0000000开始的1M虚拟地址空间映射到从0x56000000开始的1M物理地址空间
     */
    virtuladdr = 0xA0000000;
    physicaladdr = 0x56000000;
    *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC;


    /*
     * SDRAM的物理地址范围是0x30000000~0x33FFFFFF, 将虚拟地址0xB0000000~0xB3FFFFFF映射到物理地址0x30000000~0x33FFFFFF上, 总共64M,涉及64个段描述符
     */
    virtuladdr = 0xB0000000;
    physicaladdr = 0x30000000;
    while (virtuladdr < 0xB4000000)
    {
        *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) | MMU_SECDESC_WB;
        virtuladdr += MMU_SECTION_SIZE; 
        physicaladdr += MMU_SECTION_SIZE; 
    }
}

★ 启动MMU。
void mmu_init(void)
{
    unsigned long ttb = 0x30000000;


__asm__(
    "mov    r0, #0\n"
    "mcr    p15, 0, r0, c7, c7, 0\n"    /* 使无效ICaches和DCaches */
    
    "mcr    p15, 0, r0, c7, c10, 4\n"   /* drain write buffer on v4 */
    "mcr    p15, 0, r0, c8, c7, 0\n"    /* 使无效指令、数据TLB */
    
    "mov    r4, %0\n"                   /* r4 = 页表基址 */
    "mcr    p15, 0, r4, c2, c0, 0\n"    /* 设置页表基址寄存器 */
    
    "mvn    r0, #0\n"                   
    "mcr    p15, 0, r0, c3, c0, 0\n"    /* 域访问控制寄存器设为0xFFFFFFFF, 不进行权限检查*/    
    /* 
     * 对于控制寄存器,先读出其值,在这基础上修改感兴趣的位,然后再写入
     */
    "mrc    p15, 0, r0, c1, c0, 0\n"    /* 读出控制寄存器的值 */
    
    /* 控制寄存器的低16位含义为:.RVI ..RS B... .CAM
     * R : 表示换出Cache中的条目时使用的算法,0 = Random replacement;1 = Round robin replacement
     * V : 表示异常向量表所在的位置,0 = Low addresses = 0x00000000;1 = High addresses = 0xFFFF0000
     * I : 0 = 关闭ICaches;1 = 开启ICaches
     * R、S : 用来与页表中的描述符一起确定内存的访问权限
     * B : 0 = CPU为小字节序;1 = CPU为大字节序
     * C : 0 = 关闭DCaches;1 = 开启DCaches
     * A : 0 = 数据访问时不进行地址对齐检查;1 = 数据访问时进行地址对齐检查
     * M : 0 = 关闭MMU;1 = 开启MMU
     */
    
    /*  
     * 先清除不需要的位,往下若需要则重新设置它们    
     */
                                        /* .RVI ..RS B... .CAM */ 
    "bic    r0, r0, #0x3000\n"          /* ..11 .... .... .... 清除V、I位 */
    "bic    r0, r0, #0x0300\n"          /* .... ..11 .... .... 清除R、S位 */
    "bic    r0, r0, #0x0087\n"          /* .... .... 1... .111 清除B/C/A/M */


    /*
     * 设置需要的位
     */
    "orr    r0, r0, #0x0002\n"          /* .... .... .... ..1. 开启对齐检查 */
    "orr    r0, r0, #0x0004\n"          /* .... .... .... .1.. 开启DCaches */
    "orr    r0, r0, #0x1000\n"          /* ...1 .... .... .... 开启ICaches */
    "orr    r0, r0, #0x0001\n"          /* .... .... .... ...1 使能MMU */
    
    "mcr    p15, 0, r0, c1, c0, 0\n"    /* 将修改的值写入控制寄存器 */
    : /* 无输出 */
    : "r" (ttb) );
}

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值