[LeetCode] 96. Unique Binary Search Trees

本文介绍了一种使用动态规划解决LeetCode上独特二叉搜索树问题的方法。通过定义两个辅助函数G(n)和F(i,n),文章详细解释了如何递归地计算长度为n的独特二叉搜索树的数量。

题:https://leetcode.com/problems/unique-binary-search-trees/description/

题目

Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST’s:

1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

解法

引用 discussion 中一位大牛的解法,写的非常好。这里的DP方法,我始终没有想到,把问题化简为小问题的 思路值得借鉴。

原:https://leetcode.com/problems/unique-binary-search-trees/discuss/31666/DP-Solution-in-6-lines-with-explanation.-F(i-n)-G(i-1)-*-G(n-i)

The problem can be solved in a dynamic programming way. I’ll explain the intuition and formulas in the following.

Given a sequence 1…n, to construct a Binary Search Tree (BST) out of the sequence, we could enumerate each number i in the sequence, and use the number as the root, naturally, the subsequence 1…(i-1) on its left side would lay on the left branch of the root, and similarly the right subsequence (i+1)…n lay on the right branch of the root. We then can construct the subtree from the subsequence recursively. Through the above approach, we could ensure that the BST that we construct are all unique, since they have unique roots.

The problem is to calculate the number of unique BST. To do so, we need to define two functions:

G(n): the number of unique BST for a sequence of length n.

F(i, n), 1 <= i <= n: the number of unique BST, where the number i is the root of BST, and the sequence ranges from 1 to n.

As one can see, G(n) is the actual function we need to calculate in order to solve the problem. And G(n) can be derived from F(i, n), which at the end, would recursively refer to G(n).

First of all, given the above definitions, we can see that the total number of unique BST G(n), is the sum of BST F(i) using each number i as a root.
i.e.

G(n) = F(1, n) + F(2, n) + … + F(n, n).
Particularly, the bottom cases, there is only one combination to construct a BST out of a sequence of length 1 (only a root) or 0 (empty tree).
i.e.

G(0)=1, G(1)=1.
Given a sequence 1…n, we pick a number i out of the sequence as the root, then the number of unique BST with the specified root F(i), is the cartesian product of the number of BST for its left and right subtrees. For example, F(3, 7): the number of unique BST tree with number 3 as its root. To construct an unique BST out of the entire sequence [1, 2, 3, 4, 5, 6, 7] with 3 as the root, which is to say, we need to construct an unique BST out of its left subsequence [1, 2] and another BST out of the right subsequence [4, 5, 6, 7], and then combine them together (i.e. cartesian product). The tricky part is that we could consider the number of unique BST out of sequence [1,2] as G(2), and the number of of unique BST out of sequence [4, 5, 6, 7] as G(4). Therefore, F(3,7) = G(2) * G(4).

i.e.

F(i, n) = G(i-1) * G(n-i) 1 <= i <= n
Combining the above two formulas, we obtain the recursive formula for G(n). i.e.

G(n) = G(0) * G(n-1) + G(1) * G(n-2) + … + G(n-1) * G(0)
In terms of calculation, we need to start with the lower number, since the value of G(n) depends on the values of G(0) … G(n-1).

With the above explanation and formulas, here is the implementation in Java.

public int numTrees(int n) {
int [] G = new int[n+1];
G[0] = G[1] = 1;

for(int i=2; i<=n; ++i) {
    for(int j=1; j<=i; ++j) {
        G[i] += G[j-1] * G[i-j];
    }
}

return G[n];

}

Code

class Solution:
    def numTrees(self, n):
        """
        :type n: int
        :rtype: int
        """
        G = {}
        G[0] = 1
        G[1] = 1
        for i in range(2,n+1):
            G[i] = 0
            for j in range(0,i):
                G[i] += G[j] * G[i-j-1]                

        return G[n]
1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值