传送门:【SPOJ】2798 Query on a tree again!
题目分析:水水的。。树链剖分,然后以点1为根剖分,这样每次查询点1总在最高点,满足了极大的特殊性,这样我们就可以将每个区间都保存下来,然后从靠近点1的区间搜起,存在一个就直接返回。如果搜完了还没有就返回-1。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long LL ;
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )
#define ls ( o << 1 )
#define rs ( o << 1 | 1 )
#define lson ls , l , m
#define rson rs , m + 1 , r
#define root 1 , 1 , n
#define rt o , l , r
#define mid ( ( l + r ) >> 1 )
const int MAXN = 100005 ;
const int MAXE = 200005 ;
struct Edge {
int v ;
Edge* next ;
} E[MAXE] , *H[MAXN] , *edge ;
struct Stack {
int L , R ;
Stack () {}
Stack ( int L , int R ) : L ( L ) , R ( R ) {}
} S[MAXN] ;
int sum[MAXN << 2] ;
int siz[MAXN] ;
int pos[MAXN] ;
int pre[MAXN] ;
int top[MAXN] ;
int son[MAXN] ;
int dep[MAXN] ;
int val[MAXN] ;
int idx[MAXN] ;
int tree_idx ;
int point ;
int n , q ;
void clear () {
edge = E ;
siz[0] = 0 ;
dep[0] = 0 ;
clr ( H , 0 ) ;
clr ( sum , 0 ) ;
}
void addedge ( int u , int v ) {
edge -> v = v ;
edge -> next = H[u] ;
H[u] = edge ++ ;
}
void dfs ( int u ) {
siz[u] = 1 ;
son[u] = 0 ;
travel ( e , H , u ) {
int v = e -> v ;
if ( v != pre[u] ) {
pre[v] = u ;
dep[v] = dep[u] + 1 ;
dfs ( v ) ;
siz[u] += siz[v] ;
if ( siz[v] > siz[son[u]] ) son[u] = v ;
}
}
}
void rewrite ( int u , int top_element ) {
top[u] = top_element ;
pos[u] = ++ tree_idx ;
idx[tree_idx] = u ;
if ( son[u] ) rewrite ( son[u] , top_element ) ;
travel ( e , H , u ) {
int v = e -> v ;
if ( v != pre[u] && v != son[u] ) rewrite ( v , v ) ;
}
}
void update ( int x , int o , int l , int r ) {
if ( l == r ) {
sum[o] ^= 1 ;
return ;
}
int m = mid ;
if ( x <= m ) update ( x , lson ) ;
else update ( x , rson ) ;
sum[o] = sum[ls] + sum[rs] ;
}
int ask_idx ( int L , int R , int o , int l , int r ) {
if ( !sum[o] ) return -1 ;
if ( l == r ) return idx[l] ;
int m = mid ;
if ( R <= m ) return ask_idx ( L , R , lson ) ;
if ( m < L ) return ask_idx ( L , R , rson ) ;
int index = ask_idx ( L , R , lson ) ;
if ( index == -1 ) index = ask_idx ( L , R , rson ) ;
return index ;
}
int query ( int x , int y ) {
point = 0 ;
while ( top[x] != top[y] ) {
S[point ++] = Stack ( pos[top[y]] , pos[y] ) ;
y = pre[top[y]] ;
}
S[point ++] = Stack ( pos[x] , pos[y] ) ;
rev ( i , point - 1 , 0 ) {
int index = ask_idx ( S[i].L , S[i].R , root ) ;
if ( ~index ) return index ;
}
return -1 ;
}
void solve () {
int x , y ;
clear () ;
rep ( i , 1 , n ) {
scanf ( "%d%d" , &x , &y ) ;
addedge ( x , y ) ;
addedge ( y , x ) ;
}
dfs ( 1 ) ;
rewrite ( 1 , 1 ) ;
while ( q -- ) {
scanf ( "%d%d" , &x , &y ) ;
if ( x == 0 ) update ( pos[y] , root ) ;
else printf ( "%d\n" , query ( 1 , y ) ) ;
}
}
int main () {
while ( ~scanf ( "%d%d" , &n , &q ) ) solve () ;
return 0 ;
}