Spark History Server 架构原理介绍


Spark History Server 是spark内置的一个http服务,通过 sbin/sbin/start-history-server.sh启动。History Server启动后,会监听一个端口,同时启动两个定时任务线程,分别用来解析eventLog日志文件和清理过期的eventLog日志文件。

Spark History Server启动后,我们可以直接在浏览器输入 http://ip:port 访问。一般默认端口是18080

一、eventLog日志文件以及相关参数

eventLog日志文件介绍

eventLog需要将配置spark.eventLog.enabled设置为true来开启,默认是关闭的。

开启这个配置后,当我们提交spark job到集群中运行时,之后spark job在运行过程中会不断的一些运行信息写到相关的日志文件中。具体的eventLog存放目录由配置spark.eventLog.dir决定的。

Spark job在运行中,会调用EventLoggingListener#logEvent()来输出eventLog内容。spark代码中定义了各种类型的事件,一旦某个事件触发,就会构造一个类型的Event,然后获取相应的运行信息并设置进去,最终将该event对象序列化成json字符串,追加到eventLog日志文件中。

所以,eventLog日志文件是由一行一行的json串组成的,每一行json串都代表了一个事件。如下图:

在这里插入图片描述

在eventLog目录中,我们可以看到各个任务的eventLog日志文件

在这里插入图片描述

eventLog日志的文件名组成是APPID_ATTEMPTID,其中带.inprogress的表示该任务还在运行中。

相关配置参数

一般这些配置在放在spark-defaults.conf

配置名称默认值备注
spark.eventLog.enabledfalse执行spark job时是否需要输出eventLog到指定目录,建议开启
spark.eventLog.dir/tmp/spark-eventseventLog输出的hdfs路径
spark.history.fs.update.interval10shistory server每隔一段时间就会检查一下eventLog日志目录下的文件是否发生变动,然后进行解析或者更新。如果想要更及时的查看到任务的最新信息,这个时间可以设置的短一些,但太短的周期也会加重服务器的负担。
spark.history.ui.maxApplicationintMaxValue限制web界面最多查询多少个任务信息。该值如果设置的太小,会导致webUI上看不到排在后面的一些任务。
spark.history.ui.port18080history server监听端口
spark.history.fs.cleaner.enabledfalse是否开启过期eventLog日志清除,建议开启。否则eventLog就非常多
spark.history.fs.cleaner.interval1deventLog日志清除线程执行的周期。规定每隔多久检查一次eventLog并清除过期的eventLog日志
spark.history.fs.cleaner.maxAge7d规定eventLog的过期时间
spark.eventLog.compressfalse是否压缩eventLog日志文件。
spark.history.retainedApplications50在内存中缓存任务信息详情的个数,不建议设置的太大。后面就详细介绍这个缓存机制。
spark.history.fs.numReplayThreadsceil(cpu核数/4)解析eventLog的线程数量

二、两个定时任务

解析eventLog日志文件线程

该线程在FsHistoryProvider调用startPolling()方法时,通过以下代码启动:

pool.scheduleWithFixedDelay(getRunner(checkForLogs), 0, UPDATE_INTERVAL_S, TimeUnit.SECONDS)

从上面的代码可以看出,该线程每隔一段时间就会执行checkForLogs方法。这个时间间隔由配置spark.history.fs.update.interval决定,默认是10s执行一次。

该线程启动后,会扫描spark.eventLog.dir目录下的所有文件,根据过滤条件筛选出需要解析的eventLog日志文件列表,之后每一个eventLog日志文件都会开启一个线程去解析,这些线程会放到一个线程池中统一调度。该线程池的大小由spark.history.fs.numReplayThreads配置决定,默认会根据服务器的cpu核数动态调整,公式为 ceil(cpu核数/4)

过滤eventLog日志的相关代码:

      // scan for modified applications, replay and merge them
      val logInfos: Seq[FileStatus] = statusList
        .filter { entry =>
          val prevFileSize = fileToAppInfo.get(entry.getPath()).map{_.fileSize}.getOrElse(0L)
          !entry.isDirectory() &&
            !entry.getPath().getName().startsWith(".") &&
            prevFileSize < entry.getLen() &&
            SparkHadoopUtil.get.checkAccessPermission(entry, FsAction.READ)
        }
        .flatMap { entry => Some(entry) }
        .sortWith { case (entry1, entry2) =>
          entry1.getModificationTime() >= entry2.getModificationTime()
      }

注意,这里的解析并不会解析整个eventLog文件信息,只会获取application相关的一些基本信息,如下:

        val attemptInfo = new FsApplicationAttemptInfo(
          logPath.getName(),
          appListener.appName.getOrElse(NOT_STARTED),
          appListener.appId.getOrElse(logPath.getName()),
          appListener.appAttemptId,
          appListener.startTime.getOrElse(-1L),
          appListener.endTime.getOrElse(-1L),
          lastUpdated,
          appListener.sparkUser.getOrElse(NOT_STARTED),
          appCompleted,
          fileStatus.getLen()
        )

在所有的eventLog日志都解析成FsApplicationAttemptInfo后,这些信息都会被放到applications对象中。applications是一个LinkedHashMap[String, FsApplicationHistoryInfo]类型的Map。key是eventLog的路径。

清理过期的eventLog日志文件的线程

该线程在FsHistoryProvider调用startPolling()方法时,通过以下代码启动:

pool.scheduleWithFixedDelay(getRunner(cleanLogs), 0, CLEAN_INTERVAL_S, TimeUnit.SECONDS)

从上面的代码可以看出,该线程每隔一段时间就会执行cleanLogs方法。这个时间间隔由配置spark.history.fs.cleaner.interval决定,默认是1天执行一次。

该线程启动后,会遍历内存中applications对象的所有item,然后获取FsApplicationHistoryInfo.lastUpdated的值,根据spark.history.fs.cleaner.maxAge配置判断是否过期,如果过期了就准备删了对应的eventLog日志文件。(注意:这里遍历的对象是applications的item,而不是eventLog目录下的所有文件。另外,判断规则也不是获取eventLog日志文件的更新时间,而是FsApplicationHistoryInfo对象中的lastUpdated属性

三、History Server的架构

History Server是基于内嵌的jetty来构建http服务的。

这里简单介绍一下jetty的架构,jetty架构的核心是Handler。一个请求过来时,会解析然后被封装成Request,之后会交给Server对象中的Handler处理。Server的Handler可以是各种各样类型的Handler,因为History Server里面注入的是ContextHandlerCollection,我们这里只介绍ContextHandlerCollection。这个类也是Handler的一个实现类,可以理解为是Handler的集合,持有一系列Handler对象,同时还能起到路由器的作用。ContextHandlerCollection基于ArrayTernaryTrie构造了一个字典树,用于快速匹配路径。当收到一个请求时,ContextHandlerCollection根据url找到对应的Handler,然后把请求交给这个Handler去处理。Handler里面封装了各种我们自己实现的Servlet,最终请求就落到了具体的那个Servlet上执行了。

History Server在启动时,会往ContextHandlerCollection中加入一个ServletContextHandler,这里放着jersey的ServletContainer类,用来提供restful api。jersey会自动解析org.apache.spark.status.api.v1包下面的类,然后将对应的请求转发过去。

History Server启动时还会注册其他的handler,这里不多做介绍。

缓存机制

任务的applications信息是长期驻留在内存并不断更新的。当我们在页面点击查看某个任务的运行详情时,History Server就会重新去解析对应eventLog日志文件,这时就是解析整个eventLog文件了,然后将构建好的详情信息保存到缓存中。它的缓存使用了guava的CacheLoader,缓存的个数限制由配置spark.history.retainedApplications决定,在将任务信息放入缓存的同时,History Server还会提前构建好这个任务的各种状态的sparkUI(也就是web界面),并创建好ServletContextHandler,然后放到ContextHandlerCollection中去。

我们可以通过阿里的arthas来观察一下ContextHandlerCollection的变化情况:

  1. 服务刚启动时,就5个GzipHandler,他们的底层也都是ServletContextHandler。

在这里插入图片描述

  1. 随意在WebUI上点击查看某个任务的详情信息后,我们可以看到增加了20来个的handler,大多都是和这个任务相关的handler。

在这里插入图片描述

  1. 再点一个任务详情

在这里插入图片描述

通过缓存任务详情信息以及UI,用户就可以很快的查看任务的各种维度的运行信息以及相关界面。

四、一些潜在的问题

1. spark.history.retainedApplications 设置太大导致的OOM问题

由于每个任务的详情信息数据量都比较大,有的任务能达到G级别。spark.history.retainedApplications如果设置的过大,很可能会导致java堆内存空间放不下这些信息,最终导致OOM。建议维持在默认值50即可。

2. eventLog 日志文件过大导致的OOM问题

就算spark.history.retainedApplications设置的很小,但是有些时候任务产生的eventLog本身就很大,比如一个eventLog日志就达到10G。只要解析几个类似的eventLog并缓存,就可能造成OOM了。对于这种情况,我们可以通过修改spark的源码来解决,目前可以通过2个方面入手:

  • 在eventLog解析线程过滤处加一个过滤条件,即eventLog文件大小大于100M的我们就过滤不处理。即过滤代码中加上entry.getLen()<104857600
  • 找出eventLog日志太大的原因,比如我们集群是由于Accumulator的信息过多,所以可以修改JsonProtocol#accumulablesToJson()方法,在spark job运行时不统计Accumulator的信息

3. History Server 突然不可用的问题

表现为history页面无数据,抓了一下包,发现所有的请求都被转发到首页对应的那个handler中去了。也就是所有的请求都返回了首页的html内容。比如在浏览器输入 “/xxxx/xxx/xxx/xx” 也被转发到了 “/”。归根究底就是jetty的路由问题。

经过观察,发现当ContextHandlerCollection中的handler到达一定数量,就会发生这种情况。一般当handler数量达到14000就可能导致jetty路由失效。

目前可以通过调小spark.history.retainedApplications来控制handler的数量,因为缓存一个任务的详情会增加23个handler,因此理论上将spark.history.retainedApplications控制在500以下都可以认为是安全的。

经测试,将spark.history.retainedApplications从1000调整到100后,不会发生类似问题

目前还未找到jetty路由失效的真正原因

附录

jetty架构详解

JMV进程诊断利器—arthas 介绍

package com.sxt.dao; import java.sql.Connection; import java.sql.SQLException; import java.util.ArrayList; import java.util.List; import org.apache.commons.dbutils.BasicRowProcessor; import org.apache.commons.dbutils.BeanProcessor; import org.apache.commons.dbutils.GenerousBeanProcessor; import org.apache.commons.dbutils.QueryRunner; import org.apache.commons.dbutils.RowProcessor; import org.apache.commons.dbutils.handlers.BeanListHandler; import org.apache.commons.dbutils.handlers.ScalarHandler; import com.sxt.entity.HistoryDB; import com.sxt.utils.C3p0Tool; import com.sxt.utils.PageTool; public class HistoryDao { /**/ QueryRunner queryRunner= new QueryRunner(C3p0Tool.getDataSource()); BeanProcessor bean = new GenerousBeanProcessor(); RowProcessor processor = new BasicRowProcessor(bean); public Integer addHistory(HistoryDB historyDB, Connection conn) throws SQLException { QueryRunner queryRunner = new QueryRunner(); String sql ="insert into t_history (uid,name,account,bid,book_name,begin_time,end_time,status) values (?,?,?,?,?,?,?,?)"; Object[] params = {historyDB.getUid(),historyDB.getName(),historyDB.getAccount(),historyDB.getBid(), historyDB.getBookName(),historyDB.getBeginTime(),historyDB.getEndTime(),historyDB.getStatus()}; return queryRunner.update(conn, sql, params); } //查询图书借阅记录 public PageTool<HistoryDB> listByPage(String currentPage,String pageSize,Integer uid, Integer status){ try { StringBuffer listSql = new StringBuffer("select *"); StringBuffer countSql = new StringBuffer("select count(*)"); StringBuffer sql = new StringBuffer(" from t_history where 1 = 1"); List<Object> params = new ArrayList<Object>(); if (uid != null ) { sql.append(" and uid = ?"); params.add(uid); } if (status != null ) { sql.append(" and status = ?"); params.add(status); } Long total = queryRunner.query(countSql.append(sql).toString(), new ScalarHandler<Long>(),params.toArray()); 代码如何修改
最新发布
03-13
### 改进后的DAO类设计 为了提高代码的可维护性和性能,可以采用以下方法对现有的Java DAO类进行优化: #### 1. **引入C3P0连接池管理** 通过配置`ComboPooledDataSource`来初始化数据库连接池。这种方式能够有效减少频繁创建和销毁数据库连接带来的开销。 ```java import com.mchange.v2.cpm.PooledDataSource; import com.mchange.v2.cpm.impl.ComboPooledDataSource; public class DatabaseConnectionManager { private static ComboPooledDataSource cpds = new ComboPooledDataSource(); static { try { cpds.setDriverClass("com.mysql.cj.jdbc.Driver"); // 设置JDBC驱动程序[^1] cpds.setJdbcUrl("jdbc:mysql://localhost:3306/library_db?useSSL=false&serverTimezone=UTC"); cpds.setUser("root"); cpds.setPassword("password"); // 配置连接池参数 cpds.setMinPoolSize(5); cpds.setMaxPoolSize(20); cpds.setAcquireIncrement(5); // 每次增加的连接数 } catch (Exception e) { throw new RuntimeException("Error initializing database connection pool", e); } } public static java.sql.Connection getConnection() throws SQLException { return cpds.getConnection(); } } ``` #### 2. **利用DbUtils简化SQL执行逻辑** `QueryRunner` 和 `ResultSetHandler` 是 Apache DbUtils 的核心组件,它们可以帮助开发者更简洁地编写数据访问层代码。 以下是针对图书借阅记录表的操作示例(假设表名为`borrow_records`): ```java import org.apache.commons.dbutils.QueryRunner; import org.apache.commons.dbutils.handlers.BeanListHandler; import java.sql.Connection; import java.sql.SQLException; import java.util.List; public class BorrowRecordDao { private QueryRunner queryRunner = new QueryRunner(); /** * 查询所有未归还的书籍列表 */ public List<BorrowRecord> findUnreturnedBooks() { String sql = "SELECT id, book_id, user_id, borrow_date FROM borrow_records WHERE return_date IS NULL"; Connection conn = null; try { conn = DatabaseConnectionManager.getConnection(); // 获取数据库连接 BeanListHandler<BorrowRecord> handler = new BeanListHandler<>(BorrowRecord.class); return queryRunner.query(conn, sql, handler); } catch (SQLException e) { throw new RuntimeException("Database error occurred while fetching unreturned books.", e); } finally { closeConnection(conn); // 关闭资源 } } /** * 更新某条借阅记录的状态为已归还 * * @param recordId 借阅记录ID */ public void markAsReturned(int recordId) { String sql = "UPDATE borrow_records SET return_date=CURRENT_DATE WHERE id=?"; Connection conn = null; try { conn = DatabaseConnectionManager.getConnection(); queryRunner.update(conn, sql, recordId); } catch (SQLException e) { throw new RuntimeException("Failed to update the return status of a borrowing record.", e); } finally { closeConnection(conn); } } private void closeConnection(Connection conn) { if (conn != null) { try { conn.close(); // 确保释放连接回连接池 } catch (SQLException ignored) {} } } } ``` 以上实现方式不仅减少了手动处理 SQL 结果集的工作量,而且增强了异常捕获能力,从而降低了潜在错误的风险。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值