Predict the Winner

本文探讨了一个基于动态规划的游戏策略问题,玩家通过选择数组两端的非负整数来获取分数,目标是预测哪位玩家最终能赢得游戏。文章通过两个示例详细解释了如何使用动态规划算法来解决此问题,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2. 
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2). 
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5. 
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

思路:这题跟 [leetcode] Stone Game 是一模一样的题目;代码完全一样;

区间型动态规划,f[i][j] 表示的物理意义是:面对i 到j的石头,下棋子的人,我可以拿到的最大的与对手的数字差

f[i][j] = max {a[i] - f[i + 1][j], a[j] - f[i][j - 1]} , 最后如果f[0][n - 1] >= 0 代表先手alex能够拿到正数,也就是比lee拿得多,从而赢;

初始化: f[i][i] = a[i],  就面对一个数字;

计算顺序:

长度1: f[0][0] f[1][1] f[2][2]....f[n - 1][n - 1]

长度2:f[0][1],.....f[n - 2][n-1]

...

长度N:f[0][n - 1]

class Solution {
    public boolean PredictTheWinner(int[] A) {
        if(A == null || A.length == 0) {
            return false;
        }
        int n = A.length;
        int[][] f = new int[n][n];
        
        for(int i = 0; i < n; i++) {
            f[i][i] = A[i];
        }
        
        for(int len = 2; len <= n; len++) {
            for(int i = 0; i + len - 1 < n; i++) {
                int j = i + len - 1;
                f[i][j] = Math.max(A[i] - f[i + 1][j], A[j] - f[i][j - 1]);
            }
        }
        return f[0][n - 1] >= 0;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值