Finding the longest palindromic substring is a classic problem of coding interview. This post summarizes 3 different solutions for this problem.
- Dynamic Programming
Let s be the input string, i and j are two indices of the string. Define a 2-dimension array “table” and let table[i][j] denote whether a substring from i to j is palindrome.
Changing condition:
table[i+1][j-1] == 1 && s.charAt(i) == s.charAt(j)
=>
table[i][j] == 1
Time O(n^2) Space O(n^2)
public String longestPalindrome(String s) {
if(s==null || s.length()<=1)
return s;
int len = s.length();
int maxLen = 1;
boolean [][] dp = new boolean[len][len];
String longest = null;
for(int l=0; l<s.length(); l++){
for(int i=0; i<len-l; i++){
int j = i+l;
if(s.charAt(i)==s.charAt(j) && (j-i<=2||dp[i+1][j-1])){
dp[i][j]=true;
if(j-i+1>maxLen){
maxLen = j-i+1;
longest = s.substring(i, j+1);
}
}
}
}
return longest;
}
For example, if the input string is “dabcba”, the final matrix would be the following:
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
From the table, we can clearly see that the longest string is in cell table[1][5].
- A Simple Algorithm
Time O(n^2), Space O(1)
public String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
}
// get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
}
// Given a center, either one letter or two letter,
// Find longest palindrome
public String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1 && s.charAt(begin) == s.charAt(end)) {
begin–;
end++;
}
return s.substring(begin + 1, end);
}
3. Manacher’s Algorithm
Manacher’s algorithm is much more complicated to figure out, even though it will bring benefit of time complexity of O(n). Since it is not typical, there is no need to waste time on that.