1 简介
本文主要实现在手写模型识别率为0.98左右的情况下,通过FGSM和PGD方式梯度攻击模型后,识别率降到0.1以下,也简单对比了两种方式的攻击效果。
2 实验过程
源代码见本人上传资源。
首先生成识别模型,识别率在98%左右,手写识别数据已经下载到文件夹内,手写识别模型代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
#训练分类模型:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 启用GPU
train_loader = torch.utils.data.DataLoader( # 加载训练数据
datasets.MNIST('datasets', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
model = Net()
model = model.to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 初始化优化器
for epoch in range(1, 10 + 1): # 共迭代10次
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to(device)
target = target.to(device)
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data) # 代入模型
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
torch.save(model, 'datasets/model.pth') # 保存模型
生成的模型准确率在98%左右,然后下一步进行攻击:当USE_PGD = True 时为使用PGD方式攻击,为False时为使用FGSM方式攻击;
#攻击
USE_PGD = True
##USE_PGD = False
def draw(data):
ex = data.squeeze().detach().cpu().numpy()
plt.imshow(ex, cmap="gray")
plt.show()
def test(model, device, test_loader, epsilon, t=5, debug=False):
correct = 0
adv_examples = []
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data.requires_grad = True # 以便对输入求导 ** 重要 **
output = model(data)
init_pred = output.max(1, keepdim=True)[1]
if init_pred.item() != target.item(): # 如果不扰动也预测不对,则跳过
continue
if debug:
draw(data)
if USE_PGD:
alpha = epsilon / t # 每次只改变一小步
perturbed_data = data
final_pred = init_pred
# while target.item() == final_pred.item(): # 只要修改成功就退出
for i in range(t): # 共迭代 t 次
if debug:
print("target", target.item(), "pred", final_pred.item())
loss = F.cross_entropy(output, target)
model.zero_grad()
loss.backward(retain_graph=True)
data_grad = data.grad.data # 输入数据的梯度 ** 重要 **
sign_data_grad = data_grad.sign() # 取符号(正负)
perturbed_image = perturbed_data + alpha * sign_data_grad # 添加扰动
perturbed_data = torch.clamp(perturbed_image, 0, 1) # 把各元素压缩到[0,1]之间
output = model(perturbed_data) # 代入扰动后的数据
final_pred = output.max(1, keepdim=True)[1] # 预测选项
if debug:
draw(perturbed_data)
else:
loss = F.cross_entropy(output, target)
model.zero_grad()
loss.backward()
data_grad = data.grad.data # 输入数据的梯度 ** 重要 **
sign_data_grad = data_grad.sign() # 取符号(正负)
perturbed_image = data + epsilon * sign_data_grad # 添加扰动
perturbed_data = torch.clamp(perturbed_image, 0, 1) # 把各元素压缩到[0,1]之间
output = model(perturbed_data) # 代入扰动后的数据
final_pred = output.max(1, keepdim=True)[1]
# 统计准确率并记录,以便后面做图
if final_pred.item() == target.item():
correct += 1
if (epsilon == 0) and (len(adv_examples) < 5):
adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))
else: # 保存扰动后错误分类的图片
if len(adv_examples) < 5:
adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))
final_acc = correct / float(len(test_loader)) # 计算整体准确率
print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))
return final_acc, adv_examples
epsilons = [0, .05, .1, .15, .2, .25, .3] # 使用不同的调整力度
pretrained_model = "datasets/model.pth" # 使用的预训练模型路径
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('datasets', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=1, shuffle=True
)
model = torch.load(pretrained_model, map_location='cpu').to(device)
model.eval()
accuracies = []
examples = []
for eps in epsilons: # 每次测一种超参数
acc, ex = test(model, device, test_loader, eps)
accuracies.append(acc)
examples.append(ex)
最后绘制图,显示攻击效果:
# 做图
plt.figure(figsize=(8, 5))
plt.plot(epsilons, accuracies, "*-")
plt.yticks(np.arange(0, 1.1, step=0.1))
plt.xticks(np.arange(0, .35, step=0.05))
plt.title("Accuracy vs Epsilon")
plt.xlabel("Epsilon")
plt.ylabel("Accuracy")
plt.show()
cnt = 0
plt.figure(figsize=(8, 10))
for i in range(len(epsilons)):
for j in range(len(examples[i])):
cnt += 1
plt.subplot(len(epsilons), len(examples[0]), cnt)
plt.xticks([], [])
plt.yticks([], [])
if j == 0:
plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
orig, adv, ex = examples[i][j]
plt.title("{} -> {}".format(orig, adv))
plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()
注意这三部分是放到一个Python文件中运行的,运行完毕后结果图:
在FGSM攻击下:
准确率从0.98 降低到最后的0.09。
在PGD攻击下:
准确率从0.98降到0.02.可以看出PGD效果比FGSM要好,但是使用的训练时间也长。
3 参考博文
参考博文链接:https://blog.youkuaiyun.com/xieyan0811/article/details/104790915
4 代码下载链接
https://download.youkuaiyun.com/download/u013222658/12350519