大致是对每层做归一化,能加快收敛速度。
它主要是加在每一层的output 和 activition中间的。
主要看这篇博客:https://www.jianshu.com/p/0312e04e4e83
原理看这篇:https://blog.youkuaiyun.com/hjimce/article/details/50866313
其中会用到滑动平均:可以看我之前的这篇博客。
一个样例代码:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
参考:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-13-BN/
batch_normalization 简称BN,paper:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》
'''
__author__ = 'Zhang Shuai'
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# ACTIVATION = tf.nn.relu # 每一层都使用 relu
ACTIVATION = tf.nn.tanh # 每一层都使用 tanh
N_LAYERS = 7 # 一共7层隐藏层
N_HIDDEN_UNITS = 30 # 每个层隐藏层有 30 个神经元
def fix_seed(seed=1): # 设置随机数种子
np.random.seed(seed) #使每次产生的随机数一样
tf.set_random_seed(seed)
def plot_his(inputs, inputs_norm): # 绘制直方图函数
for j, all_inputs in enumerate([inputs, inputs_norm]):
for i, input in enumerate(all_inputs):
plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
plt.cla()
if i == 0:
the_range = (-7, 10)
else:
the_range = (-1, 1)
plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
plt.yticks(())
if j == 1:
plt.xticks(the_range)
else:
plt.xticks(())
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
plt.draw()
plt.pause(0.01)
def built_net(xs, ys, norm,on_train=True): # 搭建网络函数
# 添加层
def add_layer(inputs, in_size, out_size, activation_function=None, norm=False):
Weights = tf.Variable(tf.random_normal([in_size, out_size],
mean=0.0, stddev=1.0))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) #不为0的效果好,但是在BN中因为已经对每个数存在β这个偏置,所以这个参数其实在文章中说已经不需要了
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if norm: # 判断是否是Batch Normalization层
# 计算均值和方差,axes参数0表示batch维度,均值和方差的维度为out_size
#如果是图像比如说[batch,height,width,kernels](batch为128,kernels为64),那么axes要等于[0,1,2]
#这个意思就,128张图之前经过一个核为64的卷积层处理,其实就相当于128*64张图,要求每张图在(其实就是把每张图当做一个神经元,每张图权值共享,kernels的大小就像当于out_size的大小)这个batch下的的均值和方差所以axes等[0,1,2]
#返回的mean和var的shape均为(64, )也即是以 kernels为64 为单位,batch 中的全部样本的均值与方差
#这个函数输入shape为(batch_size, out_size),返回的shape应该是(out_size,)
#参考http://blog.youkuaiyun.com/lanchunhui/article/details/70792458
#https://www.jianshu.com/p/0312e04e4e83 这个感觉更清楚
#http://blog.youkuaiyun.com/hjimce/article/details/50866313这个也需要看一下
fc_mean, fc_var = tf.nn.moments(Wx_plus_b, axes=[0])
scale = tf.Variable(tf.ones([out_size])) #需要训练,初始化为1,具体参考上面链接中图中公式的γ
shift = tf.Variable(tf.zeros([out_size])) #就是batch_normalization中的参数offset,这个参数是需要训练的,初始化为0,参考图中的β
epsilon = 0.001 #图中的ε,选取一个适当小的数就可以
# 定义滑动平均模型对象,可以参考我的博客http://blog.youkuaiyun.com/u013061183/article/details/79335162
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([fc_mean, fc_var])
# 下面control_dependencies和identity可以参考我的博客http://blog.youkuaiyun.com/u013061183/article/details/79335065
with tf.control_dependencies([ema_apply_op]):
return tf.identity(fc_mean), tf.identity(fc_var)
mean, var = tf.cond(tf.cast(on_train, tf.bool), # on_train 的值是 True/False,但是不能用python的bool类型,所以要用cast转换成tf.bool
mean_var_with_update, # 如果是 True, 更新 mean/var
lambda: ( # 如果是 False, 返回之前 fc_mean/fc_var 的Moving Average
ema.average(fc_mean),
ema.average(fc_var)
)
)
Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b, mean, var,
shift, scale, epsilon)
# 上面那一步, 在做如下事情:
# Wx_plus_b = (Wx_plus_b - fc_mean) / tf.sqrt(fc_var + 0.001)
# Wx_plus_b = Wx_plus_b * scale + shift
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
fix_seed(1)
#在上面还有一个 if norm 那里定义的更详细
if norm: # 为第一层进行BN,就是对输入也进行normalizaiton,前面的只是对每一个加一个normalization层
fc_mean, fc_var = tf.nn.moments(xs, axes=[0])
scale = tf.Variable(tf.ones([1]))
shift = tf.Variable(tf.zeros([1]))
epsilon = 0.001
# 可以加上num_updates=steps这个参数,这个steps的是步数,加入后decay=min(decay,(1+steps)/(10+steps))这样可以让刚开始的时候decay较小直到收敛到decay
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([fc_mean, fc_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(fc_mean), tf.identity(fc_var)
#cond 相当于if else
mean, var = tf.cond(tf.cast(on_train, tf.bool), # on_train 的值是 True/False
mean_var_with_update, # 如果是 True, 更新 mean/var
lambda: ( # 如果是 False, 返回之前 fc_mean/fc_var 的Moving Average
ema.average(fc_mean), #获取到一直计算的滑动平均,意思是说如果不是训练那么就取
ema.average(fc_var)
)
)
xs = tf.nn.batch_normalization(xs, mean, var, shift, scale, epsilon)
layers_inputs = [xs] # 记录每一层的输入
for l_n in range(N_LAYERS): # 依次添加7层
layer_input = layers_inputs[l_n]
in_size = layers_inputs[l_n].get_shape()[1].value
output = add_layer(layer_input, in_size, N_HIDDEN_UNITS, ACTIVATION, norm)
layers_inputs.append(output)
prediction = add_layer(layers_inputs[-1], 30, 1, activation_function=None)
cost = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
train_op = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
return [train_op, cost, layers_inputs]
fix_seed(1)
x_data = np.linspace(-7, 10, 2500)[:, np.newaxis]
np.random.shuffle(x_data)
noise = np.random.normal(0, 8, x_data.shape)
y_data = np.square(x_data) - 5 + noise
plt.scatter(x_data, y_data)
plt.show()
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
train_op, cost, layers_inputs = built_net(xs, ys, norm=False)
train_op_norm, cost_norm, layers_inputs_norm = built_net(xs, ys, norm=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
cost_his = []
cost_his_norm = []
record_step = 5
plt.ion()
plt.figure(figsize=(7, 3))
for i in range(250):
if i % 50 == 0:
all_inputs, all_inputs_norm = sess.run([layers_inputs, layers_inputs_norm],
feed_dict={xs: x_data, ys: y_data})
plot_his(all_inputs, all_inputs_norm)
sess.run([train_op, train_op_norm],
feed_dict={xs: x_data[i * 10:i * 10 + 10], ys: y_data[i * 10:i * 10 + 10]})
if i % record_step == 0:
cost_his.append(sess.run(cost, feed_dict={xs: x_data, ys: y_data}))
cost_his_norm.append(sess.run(cost_norm,
feed_dict={xs: x_data, ys: y_data}))
plt.ioff()
plt.figure()
plt.plot(np.arange(len(cost_his)) * record_step,
np.array(cost_his), label='Without BN') # no norm
plt.plot(np.arange(len(cost_his)) * record_step,
np.array(cost_his_norm), label='With BN') # norm
plt.legend()
plt.show()