题意:全然平方数是指含有平方数因子的数。求第ki个非全然平方数。
解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分。求1-middle的非全然平方数个数能够用总数减掉全然平方数个数。计算全然平方数的个数用容斥:
首先加上n/(2*2)+n/(3*3)+n/(5*5)+n/(7*7)...+...然后减掉出现两次的,然后加上三次的...奇加偶减。这就是mou的原型,用mou数组计算非常easy;
注意:本题编译器问题用I64d不能过 而用lld可以过
算法描述引用:http://www.mamicode.com/info-detail-232133.html
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 50009
typedef long long LL;
int vis[N],mu[N],prim[N];
int top;
void getMu() {
memset(vis,0,sizeof(vis));
memset(mu,0,sizeof(mu));
mu[1] = 1; top = 0;
for(int i = 2;i<N;i++){
if(vis[i]==0) {
prim[top++] = i;
mu[i] = -1;
}
for(int j = 0;j<top&&(LL)i*prim[j]<N;j++) {
vis[i*prim[j]] = 1;
if(i%prim[j]==0) {
mu[i*prim[j]] = 0;
break;
}
else mu[i*prim[j]] = -mu[i];
}
}
}
LL judge(LL x) {
int t = (int)sqrt(1.0*x);
LL ans = 0;
for(LL i = 1;i<=t;i++)
ans += x/(i*i)*mu[i];
return ans;
}
LL search(LL x){
LL l = x,r = 1644934081,mid;
while(l <= r) {
mid = (l + r)>>1;
LL tem1 = judge(mid);
if(tem1==x&&judge(mid-1)<tem1) return mid;
if(tem1 >= x) r = mid;
else l = mid + 1;
}
return mid;
}
int main() {
int T;
LL x;
getMu();
scanf("%d",&T);
while(T--) {
scanf("%lld",&x);
printf("%lld\n",search(x));
}
return 0;
}