损失函数/Loss Function/代价函数/Cost Function

损失函数衡量预测值与实际值的偏离程度,用于评估模型的准确性。0-1损失函数适用于分类但优化困难,平方损失函数常见于线性回归,对数损失函数常用于逻辑回归,而Hinge损失函数则应用于SVM算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们可以知道,损失函数用于衡量预测值与实际值的偏离程度,如果预测是完全精确的,则损失函数值为0;

如果损失函数值不为0,则其表示的是预测的错误有多糟糕。使得损失函数值最小的那些待求参数值,就是“最优”的参数值。

 

损失函数有很多种,例如下面几个:

(1)0-1损失函数:可用于分类问题,即该函数用于衡量分类错误的数量,但由于此损失函数是非凸(non-convex)的,因此在做最优化计算时,难以求解。

(2)平方损失函数(Square Loss):常用于线性回归(Linear Regression)。

(3)对数损失(Log Loss)函数:常用于其模型输出每一类概率的分类器(classifier),例如逻辑回归。

(4)Hinge损失函数:常用于SVM(Support Vector Machine,支持向量机,一种机器学习算法)。中文名叫“合页损失函数”,因为hinge有“合页”之意。这个翻译虽然直白,但是你会发现,99%的文章都不会用它的中文名来称呼它,而是用“Hinge损失”之类的说法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨鑫newlfe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值