13:机器人的运动范围
题目:地上有一个m行和n列的方格。一个机器人从坐标(0,0)的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
//回溯法
int movingCount(int threshold, int rows, int cols)
{
if(threshold < 0 || rows <= 0 || cols <= 0)
return 0;
bool *visited = new bool[rows * cols];
for(int i = 0; i < rows * cols; ++i)
visited[i] = false;
int count = movingCountCore(threshold, rows, cols,
0, 0, visited);
delete[] visited;
return count;
}
int movingCountCore(int threshold, int rows, int cols, int row,
int col, bool* visited)
{
int count = 0;
if(check(threshold, rows, cols, row, col, visited))
{
visited[row * cols + col] = true;
count = 1 + movingCountCore(threshold, rows, cols,
row - 1, col, visited)
+ movingCountCore(threshold, rows, cols,
row, col - 1, visited)
+ movingCountCore(threshold, rows, cols,
row + 1, col, visited)
+ movingCountCore(threshold, rows, cols,
row, col + 1, visited);
}
return count;
}
bool check(int threshold, int rows, int cols, int row, int col,
bool* visited)
{
if(row >= 0 && row < rows && col >= 0 && col < cols
&& getDigitSum(row) + getDigitSum(col) <= threshold
&& !visited[row* cols + col])
return true;
return false;
}
int getDigitSum(int number)
{
int sum = 0;
while(number > 0)
{
sum += number % 10;
number /= 10;
}
return sum;
}
14:剪绳子
题目:给你一根长度为n绳子,请把绳子剪成m段(m、n都是整数,n>1并且m≥1)。每段的绳子的长度记为k[0]、k[1]、……、k[m]。k[0]* k[1] * … * k[m]可能的最大乘 积是多少?例如当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此 时得到最大的乘积18。 |
//动态规划
int maxProductAfterCutting_solution1(int length)
{
if(length < 2)
return 0;
if(length == 2)
return 1;
if(length == 3)
return 2;
int* products = new int[length + 1];
products[0] = 0;
products[1] = 1;
products[2] = 2;
products[3] = 3;
int max = 0;
for(int i = 4; i <= length; ++i)
{
max = 0;
for(int j = 1; j <= i / 2; ++j)
{
int product = products[j] * products[i - j];
if(max < product)
max = product;
products[i] = max;
}
}
max = products[length];
delete[] products;
return max;
}
//贪婪算法
int maxProductAfterCutting_solution2(int length)
{
if(length < 2)
return 0;
if(length == 2)
return 1;
if(length == 3)
return 2;
// 尽可能多地减去长度为3的绳子段
int timesOf3 = length / 3;
// 当绳子最后剩下的长度为4的时候,不能再剪去长度为3的绳子段。
// 此时更好的方法是把绳子剪成长度为2的两段,因为2*2 > 3*1。
if(length - timesOf3 * 3 == 1)
timesOf3 -= 1;
int timesOf2 = (length - timesOf3 * 3) / 2;
return (int) (pow(3, timesOf3)) * (int) (pow(2, timesOf2));
}
15:二进制中1的个数
//解法一
int NumberOf1(int n) {
int count=0;
unsigned int flag=1;
while(flag)
{
if(n&flag)
count++;
flag=flag<<1; //一共需要移动32次
}
return count;
}
//解法二
int NumberOf1_Solution2(int n)
{
int count = 0;
while (n)
{
++count;
n = (n - 1) & n;
}
return count;
}
16:数值的整数次方
题目:给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。
bool g_InvalidInput = false;
double Power(double base, int exponent)
{
g_InvalidInput = false;
if (equal(base, 0.0) && exponent < 0)
{
g_InvalidInput = true;
return 0.0;
}
unsigned int absExponent = (unsigned int) (exponent);
if (exponent < 0)
absExponent = (unsigned int) (-exponent);
double result = PowerWithUnsignedExponent(base, absExponent);
if (exponent < 0)
result = 1.0 / result;
return result;
}
double PowerWithUnsignedExponent(double base, unsigned int exponent)
{
if (exponent == 0)
return 1;
if (exponent == 1)
return base;
double result = PowerWithUnsignedExponent(base, exponent >> 1);
result *= result;
if ((exponent & 0x1) == 1)
result *= base;
return result;
}
bool equal(double num1, double num2)
{
if ((num1 - num2 > -0.0000001) && (num1 - num2 < 0.0000001))
return true;
else
return false;
}