LeetCode OJ Palindrome Partitioning II

本文介绍了一种使用动态规划解决字符串最小回文分割问题的方法。通过维护两个状态:是否为回文串及最小切割数,实现了高效求解。分享了LeetCode上的优秀解题思路与代码实现。

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

还想按照上一题的dfs解法来解,结果超时了,后来在discuss里面看到了更好地解法,用dp:
直接摘录了:

Calculate and maintain 2 DP states:

  1. pal[i][j] , which is whether s[i..j] forms a pal

  2. d[i], which is the minCut for s[i..n-1]

Once we comes to a pal[i][j]==true:

  • if j==n-1, the string s[i..n-1] is a Pal, minCut is 0, d[i]=0;
  • else: the current cut num (first cut s[i..j] and then cut the rest s[j+1...n-1]) is 1+d[j+1], compare it to the exisiting minCut num d[i], repalce if smaller.

d[0] is the answer.

代码也是照抄,罪过:

class Solution {
public:
    int minCut(string s) {
        if(s.empty()) return 0;
        int n = s.size();
        vector<vector<bool>> pal(n,vector<bool>(n,false));
        vector<int> d(n);
        for(int i=n-1;i>=0;i--)
        {
            d[i]=n-i-1;  // initialize the d[i] as its max(to a n-length string, the max cut is n - 1)
            for(int j=i;j<n;j++)
            {
                if(s[i]==s[j] && (j-i<2 || pal[i+1][j-1]))  // if a palindrome's two sides are the same of its length is zero
                {
                   pal[i][j]=true;
                   if(j==n-1)
                       d[i]=0;
                   else if(d[j+1]+1<d[i])
                       d[i]=d[j+1]+1;
                }
            }
        }
        return d[0];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值