Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
还想按照上一题的dfs解法来解,结果超时了,后来在discuss里面看到了更好地解法,用dp:
直接摘录了:
Calculate and maintain 2 DP states:
-
pal[i][j] , which is whether s[i..j] forms a pal
-
d[i], which is the minCut for s[i..n-1]
Once we comes to a pal[i][j]==true:
- if j==n-1, the string s[i..n-1] is a Pal, minCut is 0, d[i]=0;
- else: the current cut num (first cut s[i..j] and then cut the rest s[j+1...n-1]) is 1+d[j+1], compare it to the exisiting minCut num d[i], repalce if smaller.
d[0] is the answer.
代码也是照抄,罪过:
class Solution {
public:
int minCut(string s) {
if(s.empty()) return 0;
int n = s.size();
vector<vector<bool>> pal(n,vector<bool>(n,false));
vector<int> d(n);
for(int i=n-1;i>=0;i--)
{
d[i]=n-i-1; // initialize the d[i] as its max(to a n-length string, the max cut is n - 1)
for(int j=i;j<n;j++)
{
if(s[i]==s[j] && (j-i<2 || pal[i+1][j-1])) // if a palindrome's two sides are the same of its length is zero
{
pal[i][j]=true;
if(j==n-1)
d[i]=0;
else if(d[j+1]+1<d[i])
d[i]=d[j+1]+1;
}
}
}
return d[0];
}
};