Sicily 1697. Golygon

本文介绍了一种生成Golygon图形的方法,通过遵循特定的步骤和规则,可以在二维平面上绘制具有任意数量边的封闭多边形。文章详细阐述了算法实现过程,并提供了一个实例来验证算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1697. Golygon

Constraints

Time Limit: 1 secs, Memory Limit: 32 MB , Special Judge

Description

Golygon is an interesting type of simple polygon. If a golygon with n edges exist, then we can draw it out on the Cartesian plane using the following procedure: 

       Starting at the origin, set the initial direction to north(or east, south, west), then go straightforward 1 unit, choose to turn left or right, and then go straightforward 2 units, choose to turn left or right again, and then go straightforward 3 units, choose to turn left or right the third time, …., and then go straightforward n units, and choose to turn left or right the n-th time, if the path has returned to the origin and the current direction is the same as the initial direction, and there is no crossing in the whole path, then the resulting polygon is a golygon with n edges. The following picture shows a sample golygon with 8 edges. This golygon can be described by the vertices sequence: (0,0), (0,1), (2,1), (2,-2), (-2,-2), (-2,-7), (-8, -7), (-8,0). 

Of course there is no guarantee that a golygon with n edges always exists. And even if it exists, when you’re trying to follow the above procedure to draw it out, you must carefully determine how to change your direction each time, otherwise the resulting figure will not be a valid golygon.

       Now, given the number of edges, n, please determine whether such a golygon exists or not, and if it really exists, please describe the vertices sequence of a sample one.

Input

Input contains several test cases. The first line is a single integer, T (1<=T<=20), indicating the number of cases. Each case has only one line containing an integer, N (1<=N<=10000), the number of edges of the golygon.

Output

For each case, if the desired golygon does not exist, just output “NO”, otherwise please output “YES”, followed by the vertices sequence of a sample golygon, one vertex per line. Each vertex is described by two integers x and y, the x-coordinate and y-coordinate. These two integers are separated by a single space. The first vertex must be (0, 0). There may be several solutions, any of them is acceptable. 

Sample Input

41248

Sample Output

NONONOYES0 00 12 12 -2-2 -2-2 -7-8 -7-8 0

// Problem#: 1697
// Submission#: 3589003
// The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// URI: http://creativecommons.org/licenses/by-nc-sa/3.0/
// All Copyright reserved by Informatic Lab of Sun Yat-sen University
#include <stdio.h>

int main() {
    int T, n, x, y, i;
    scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        if (n % 8 == 0) {
            printf("YES\n");
            x = 0, y = 0;
            for (i = 0; i < n / 4; i += 2) {
                printf("%d %d\n", x, y);
                y += i + 1;
                printf("%d %d\n", x, y);
                x += i + 2;
            }
            for (i = n / 4; i < 3 * n / 4; i += 2) {
                printf("%d %d\n", x, y);
                y -= i + 1;
                printf("%d %d\n", x, y);
                x -= i + 2;
            }
            for (i = 3 * n / 4; i < n; i += 2) {
                printf("%d %d\n", x, y);
                y += i + 1;
                printf("%d %d\n", x, y);
                x += i + 2;
            }
        } else printf("NO\n");
    }
    return 0;
}                                 


内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值