Untitled
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 481 Accepted Submission(s): 245
Problem Description
There is an integer
a
and
n
integers
b1,…,bn
. After selecting some numbers from
b1,…,bn
in any order, say
c1,…,cr
, we want to make sure that
a mod c1 mod c2 mod… mod cr=0
(i.e.,
a
will become the remainder divided by
ci
each time, and at the end, we want
a
to become
0
). Please determine the minimum value of
r
. If the goal cannot be achieved, print
−1
instead.
Input
The first line contains one integer
T≤5
, which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
Output
Print
T
answers in
T
lines.
Sample Input
2 2 9 2 7 2 9 6 7
Sample Output
2 -1
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int n,a;
int b[30];
int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&a);
for(int i=0;i<n;i++)
{
scanf("%d",b+i);
}
sort(b,b+n,greater<int>());
int ans=INF;
for(int i=0;i<(1<<n);i++)
{
int ta=a;
int cnt=0;
for(int j=0;j<n;j++)
{
if((i>>j)&1)
{
cnt++;
ta%=b[j];
}
}
if(ta==0)
{
ans=min(ans,cnt);
}
}
if(ans==INF) ans=-1;
printf("%d\n",ans);
}
return 0;
}