ZOJ 3723 Starfruit

本文介绍了一个基于状压动态规划(DP)的游戏问题解决方案。问题来源于一款受植物大战僵尸启发的游戏,玩家需要放置名为星果的特殊植物来抵御僵尸攻击。星果能够向五个方向发射攻击,但攻击距离受限且存在互相攻击的问题。文章详细讨论了如何通过状态压缩和动态规划算法来最大化地图上可放置的星果数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


恶心的状压DP。。。

与炮兵阵地类似。。。多了两个方向。而且发射的炮弹可能被石头挡住。。。。

1.因为方向是对称的,所以可以把下面两条边翻上来,考虑这样只要考虑上面的行就行了。。。。

2.被石头挡住。。。可以模拟一下

3.卡内存。。。。要用滚动数组+把可能的状态存下来


Starfruit

Time Limit: 4 Seconds      Memory Limit: 65536 KB

Plants VS Zombie is an interesting game, recently Edward has become totally addicted to playing this game. There are many kinds of plants he can choose to defend zombies, but what Edward interests most is a kind of plants called Starfruit. As we know, most plants stand toward right and only can attack zombies those are precisely on its right. However, starfruit is much more powerful, it can sparks little stars towards five directions!

Edward is so interested in this fruit that he wrote a game with nothing but starfruit. Unfortunately, something beyond exception happened, that starfruit now only can attack less than 3 units distance(by Euclidean distance), also he made a mistake with directions: now starfruits spark towards up, left, right, lower left and lower right(not as usual in PVZ). What's more, now starfruit attacks each other!

As Edward likes statfruit very much, he wants to put as more starfruit into the map as possible, but if you place a starfruit on a lattice attacked by another starfruit, it will die and disappear immediately. So now he wants to know the maximum number of starfruits can be placed on the map, but recently he's busy preparing Summer Camp so he turns to your help.

Input

The input consists of several cases. Each case starts with a line contains two integer n(1≤n≤1000) and m(1≤m≤12), indicates that it's a map of width m and height n. Then follows nlines each with m characters, which is either 'X' or '.'. A '.' means you can put starfruit on it, A 'X' means there is a rock there so that you can't put anything on it, also the stars sparked by starfruits can't across a rock.
Input ends when both n and m equals to 0. This case will not be executed.

Output

For each case, output the maximum number of the starfruit you can put.

Sample Input
3 3
...
XX.
...
0 0
Sample Output
3
Hint

  • All lattices are squares of one unit, both starfruit and rock are considered at the center of the lattice.
  • The answer to the sample: ('O' means starfruit)
      O..
      XXO
      O..
  • If a map like this and 'O' is a starfruit, we consider point A and B are been attacked.
      OX.
      XA.
      ..B


Author: LIN, Chengyuan
Contest: ZOJ Monthly, June 2013


#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <algorithm>

using namespace std;

int n,m,G[1100],hav[1100],dp[3][510][510],ZT[500],TZ[5000],Size;
char str[1100][15];
vector<int> state[1100];
set<int> vis;

bool ckleft(int p,int sta)
{
    int newst=(sta<<1);
    int temp=newst&(G[p]);
    newst=newst&(~temp);
    if(newst&sta) return false;
    newst<<=1;
    temp=newst&(G[p]);
    newst=newst&(~temp);
    if(newst&sta) return false;
    return true;
}

bool ckright(int p,int sta)
{
    int newst=(sta>>1);
    int temp=newst&(G[p]);
    newst=newst&(~temp);
    if(newst&sta) return false;
    newst>>=1;
    temp=newst&(G[p]);
    newst=newst&(~temp);
    if(newst&sta) return false;
    return true;
}

bool ckup(int p,int sta,int stapp,int stappp)
{
    int qiang1=G[p-1],qiang2=G[p-2];
    int temp=qiang1&sta;
    int newst=sta&(~temp);
    if(newst&stapp) return false;
    temp=qiang2&newst;
    newst=newst&(~temp);
    if(newst&stappp) return false;
    return true;
}

bool ckleftup(int p,int sta,int stapp,int stappp)
{
    int qiang1=G[p-1],qiang2=G[p-2];
    int newst=sta<<1;
    int temp=qiang1&newst;
    newst=newst&(~temp);
    if(newst&stapp) return false;
    newst<<=1;
    temp=qiang2&newst;
    newst=newst&(~temp);
    if(newst&stappp) return false;
    return true;
}

bool ckrightup(int p,int sta,int stapp,int stappp)
{
    int qiang1=G[p-1],qiang2=G[p-2];
    int newst=sta>>1;
    int temp=qiang1&newst;
    newst=newst&(~temp);
    if(newst&stapp) return false;
    newst>>=1;
    temp=qiang2&newst;
    newst=newst&(~temp);
    if(newst&stappp) return false;
    return true;
}

bool ck01(int sta0,int sta1)
{
    if(sta0&sta1) return false;
    if(sta0&(sta1<<1)) return false;
    if(sta0&(sta1>>1)) return false;
    return true;
}

int ST[3100];
int Count(int x)
{
    int ans=0;
    for(int i=0;i<m;i++)
    {
        if(x&(1<<i)) ans++;
    }
    return ans;
}

int main()
{

while(scanf("%d%d",&n,&m)!=EOF&&n&&m)
{
    memset(G,0,sizeof(G));
    memset(hav,0,sizeof(hav));
    memset(dp,0,sizeof(dp));

    for(int i=0;i<n;i++)
    {
        scanf("%s",str[i]);
        for(int j=m-1;j>=0;j--)
        {
            if(str[i][j]=='X')
            {
                G[i]|=1<<(m-1-j);
            }
        }
    }

    for(int i=0;i<n;i++)
    {
        state[i].clear();
        for(int j=0;j<(1<<m);j++)
        {
            if(j&G[i]) continue;///不能种在石头上
            if(ckleft(i,j)&&ckright(i,j))
            {
                if(ST[j]==0&&j) ST[j]=Count(j);
                hav[i]++;
                if(vis.count(j)==0)
                {
                    vis.insert(j);
                    TZ[j]=Size;
                    ZT[Size++]=j;
                }
                state[i].push_back(TZ[j]);
            }
        }
    }

    ///0...1...
    int ans=0;
    for(int i=0;i<hav[0];i++)
    {
        dp[0][state[0][i]][TZ[0]]=ST[ZT[state[0][i]]];
        ans=max(ans,dp[0][state[0][i]][TZ[0]]);
    }
    for(int i=0;i<hav[1];i++)
    {
        for(int j=0;j<hav[0];j++)
        {
            if(ck01(ZT[state[0][j]],ZT[state[1][i]]))
            {
                dp[1][state[1][i]][state[0][j]]=max(dp[1][state[1][i]][state[0][j]],dp[0][state[0][j]][TZ[0]]+ST[ZT[state[1][i]]]);
                ans=max(ans,dp[1][state[1][i]][state[0][j]]);
            }
        }
    }
    ///2...n-1

    for(int i=2;i<n;i++)
    {
        for(int j=0;j<hav[i];j++)
        {
            for(int k=0;k<hav[i-1];k++)
            {
                if(!ck01(ZT[state[i-1][k]],ZT[state[i][j]])) continue;
                for(int l=0;l<hav[i-2];l++)
                {
                    if(!ck01(ZT[state[i-2][l]],ZT[state[i-1][k]])) continue;
                    if(ckup(i,ZT[state[i][j]],ZT[state[i-1][k]],ZT[state[i-2][l]])
                       &&ckleftup(i,ZT[state[i][j]],ZT[state[i-1][k]],ZT[state[i-2][l]])
                       &&ckrightup(i,ZT[state[i][j]],ZT[state[i-1][k]],ZT[state[i-2][l]]))
                    {
                        dp[i%3][state[i][j]][state[i-1][k]]=
                        max(dp[i%3][state[i][j]][state[i-1][k]],dp[(i-1)%3][state[i-1][k]][state[i-2][l]]+ST[ZT[state[i][j]]]);
                        ans=max(ans,dp[i%3][state[i][j]][state[i-1][k]]);
                    }
                }
            }
        }
    }
    printf("%d\n",ans);
}
    return 0;
}





内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值