309. Best Time to Buy and Sell Stock with Cooldown

本文介绍了一种使用动态规划解决股票交易最大利润问题的方法,并通过状态机的思路清晰地阐述了状态转移过程。针对特定限制条件(如冷却期),提供了一个有效的算法实现。

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

Credits:

Special thanks to @dietpepsi for adding this problem and creating all test cases.


提示:

这道题可以用动态规划的思路解决。但是一开始想的时候总是抽象不出状态转移方程来,之后看到了一种用状态机的思路,觉得很清晰,特此拿来分享,先看如下状态转移图:

这里我们把状态分成了三个,根据每个状态的指向,我们可以得出下面的状态转移方程:

  • s0[i] = max(s0[i-1], s2[i-1])
  • s1[i] = max(s1[i-1], s0[i-1] - price[i])
  • s2[i] = s1[i-1] + price[i]

这样就清晰了很多。

代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        if(n<=1)return 0;
        vector<int> s0(n,0);
        vector<int> s1(n,0);
        vector<int> s2(n,0);
        s1[0]=-prices[0];
        s0[0]=0;
        s2[0]=INT_MIN;
        for(int i=1;i<n;i++){
            s0[i]=max(s0[i-1],s2[i-1]);
            s1[i]=max(s0[i-1]-prices[i],s1[i-1]);
            s2[i]=s1[i-1]+prices[i];
        }
        return max(s0[n-1],s2[n-1]);
    }
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值