题意:给一棵树,有m 条paths, 问最多可以选取多少条 paths && 任意俩条path 没有公共的点;
思路:记 f = lca(u,v) ,按照 dep[f] 的大小去排序,优先处理 深度大的(离根节点远的,, 如果 u,v都是没有用过的,那么就把 以 f 为根的子数全部标记为用过;
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<list>
#include<map>
#include<set>
using namespace std;
const int N = 100010;
const int Max_step = 17;
int n, m;
vector <int> e[N];
int dep[N];
bool used[N];
int parent[Max_step][N];
struct Que{
int i,f;
Que(int i =0, int f = 0): i(i),f(f) {}
};
queue <Que> que;
struct In{
int st,ed,f,dep;
In(int st=0,int ed=0,int f=0,int dep=0):st(st),ed(ed),f(f),dep(dep) {}
};
vector <In> res;
void deal_init(){
for(int i = 1; i <= n ; i++ ) e[i].clear();
int a,b;
for(int i = 1; i < n; i++){
scanf("%d%d",&a,&b);
e[a].push_back(b);
e[b].push_back(a);
}
}
void bfs(){
que.push(Que(1,-1));
dep[1]=0;
while(!que.empty()){
Que cur=que.front();que.pop();
int i = cur.i,f = cur.f;
parent[0][i] = f;
vector<int> :: iterator it;
for(it = e[i].begin(); it != e[i].end(); it++){
if(*it != f){
que.push(Que(*it, i));
dep[*it] = dep[i] + 1;
}
}
}
}
void deal_prelca(){
bfs();
for(int step = 0; step < Max_step-1; step++){
for(int i = 1; i <= n; i++){
int f = parent[step][i];
if(f < 0) parent[step + 1][i] = f;
else parent[step + 1][i] = parent[step][f];
}
}
}
int LCA(int u,int v){
if(dep[u] > dep[v]) swap(u,v);
for(int step = 0; step < Max_step; step++){
int dis = dep[v] - dep[u];
if(dis >> step & 1) v = parent[step][v];
}
if(u == v) return u;
for(int step = Max_step - 1; step >= 0; step--){
if(parent[step][u] != parent[step][v]){
u = parent[step][u];
v = parent[step][v];
}
}
return parent[0][u];
}
bool cmp(In a,In b){
return a.dep > b.dep;
}
void deal_res(){
res.clear();
int a, b,f;
for(int i = 0; i < m; i++){
scanf("%d%d",&a, &b);
f = LCA(a,b);
res.push_back(In(a,b,f,dep[f]));
}
sort(res.begin(), res.end(),cmp);
}
queue<int>mark;
void deal_mark(int st){
if(used[st]) return ;
mark.push(st);
while(!mark.empty()){
int i = mark.front(); mark.pop();
if(used[i]) continue;
used[i] = 1;
vector<int> :: iterator it;
for(it = e[i].begin(); it != e[i].end(); it++){
if(dep[*it] < dep[i] || used[*it]) continue;
else mark.push(*it);
}
}
}
void deal_ans(){
int ans = 0;
memset(used, 0, sizeof(used));
vector<In> :: iterator it;
for(it = res.begin(); it != res.end(); it++){
int f = it -> f;
int a = it -> st, b = it -> ed;
if(used[a] == 0 && used[b] == 0) {
ans++;
deal_mark(f);
}
}
cout << ans << endl;
}
int main()
{
// freopen("in.in","r",stdin);
while(~scanf("%d%d",&n, &m)){
deal_init();
deal_prelca();
deal_res();
deal_ans();
}
return 0;
}
Paths on the tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 433 Accepted Submission(s): 130
Problem Description
bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.
There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.
Find the maximum number of paths bobo can pick.
There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.
Find the maximum number of paths bobo can pick.
Input
The input consists of several tests. For each tests:
The first line contains n,m (1≤n,m≤10 5). Each of the following (n - 1) lines contain 2 integers a i,b i denoting an edge between vertices a i and b i (1≤a i,b i≤n). Each of the following m lines contain 2 integers u i,v i denoting a path between vertices u i and v i (1≤u i,v i≤n).
The first line contains n,m (1≤n,m≤10 5). Each of the following (n - 1) lines contain 2 integers a i,b i denoting an edge between vertices a i and b i (1≤a i,b i≤n). Each of the following m lines contain 2 integers u i,v i denoting a path between vertices u i and v i (1≤u i,v i≤n).
Output
For each tests:
A single integer, the maximum number of paths.
A single integer, the maximum number of paths.
Sample Input
3 2 1 2 1 3 1 2 1 3 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 5 6 7
Sample Output
1 2
Author
Xiaoxu Guo (ftiasch)