VSCode GCC C++ 编译环境配置

Using GCC with MinGW

In this tutorial, you configure Visual Studio Code to use the GCC C++ compiler (g++) and GDB debugger from mingw-w64 to create programs that run on Windows.

After configuring VS Code, you will compile and debug a simple Hello World program in VS Code. This tutorial does not teach you about GCC, GDB, Mingw-w64, or the C++ language. For those subjects, there are many good resources available on the Web.

If you have any problems, feel free to file an issue for this tutorial in the VS Code documentation repository.

Prerequisites#

To successfully complete this tutorial, you must do the following steps:

  1. Install Visual Studio Code.

  2. Install the C/C++ extension for VS Code. You can install the C/C++ extension by searching for 'c++' in the Extensions view (Ctrl+Shift+X).

  3. Get the latest version of Mingw-w64 via MSYS2, which provides up-to-date native builds of GCC, Mingw-w64, and other helpful C++ tools and libraries. You can download the latest installer from the MSYS2 page or use this link to the installer.

  4. Follow the Installation instructions on the MSYS2 website to install Mingw-w64. Take care to run each required Start menu and pacman command, especially Step 7, when you will install the actual Mingw-w64 toolset (pacman -S --needed base-devel mingw-w64-x86_64-toolchain).

  5. Add the path to your Mingw-w64 bin folder to the Windows PATH environment variable by using the following steps:

    1. In the Windows search bar, type 'settings' to open your Windows Settings.
    2. Search for Edit environment variables for your account.
    3. Choose the Path variable in your User variables and then select Edit.
    4. Select New and add the Mingw-w64 destination folder path to the system path. The exact path depends on which version of Mingw-w64 you have installed and where you installed it. If you used the settings above to install Mingw-w64, then add this to the path: C:\msys64\mingw64\bin.
    5. Select OK to save the updated PATH. You will need to reopen any console windows for the new PATH location to be available.

Check your MinGW installation#

To check that your Mingw-w64 tools are correctly installed and available, open a new Command Prompt and type:

g++ --version
gdb --version

If you don't see the expected output or g++ or gdb is not a recognized command, make sure your PATH entry matches the Mingw-w64 binary location where the compilers are located. If the compilers do not exist at that PATH entry, make sure you followed the instructions on the MSYS2 website to install Mingw-w64.

Create Hello World#

From a Windows command prompt, create an empty folder called projects where you can place all your VS Code projects. Then create a sub-folder called helloworld, navigate into it, and open VS Code in that folder by entering the following commands:

mkdir projects
cd projects
mkdir helloworld
cd helloworld
code .

The "code ." command opens VS Code in the current working folder, which becomes your "workspace". Accept the Workspace Trust dialog by selecting Yes, I trust the authors since this is a folder you created.

As you go through the tutorial, you will see three files created in a .vscode folder in the workspace:

  • tasks.json (build instructions)
  • launch.json (debugger settings)
  • c_cpp_properties.json (compiler path and IntelliSense settings)

Add a source code file#

In the File Explorer title bar, select the New File button and name the file helloworld.cpp.

Add hello world source code#

Now paste in this source code:

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main()
{
    vector<string> msg {"Hello", "C++", "World", "from", "VS Code", "and the C++ extension!"};

    for (const string& word : msg)
    {
        cout << word << " ";
    }
    cout << endl;
}

Now press Ctrl+S to save the file. Notice how the file you just added appears in the File Explorer view (Ctrl+Shift+E) in the side bar of VS Code:

You can also enable Auto Save to automatically save your file changes, by checking Auto Save in the main File menu.

The Activity Bar on the far left lets you open different views such as SearchSource Control, and Run. You'll look at the Run view later in this tutorial. You can find out more about the other views in the VS Code User Interface documentation.

Note: When you save or open a C++ file, you may see a notification from the C/C++ extension about the availability of an Insiders version, which lets you test new features and fixes. You can ignore this notification by selecting the X (Clear Notification).

Explore IntelliSense#

In your new helloworld.cpp file, hover over vector or string to see type information. After the declaration of the msg variable, start typing msg. as you would when calling a member function. You should immediately see a completion list that shows all the member functions, and a window that shows the type information for the msg object:

You can press the Tab key to insert the selected member; then, when you add the opening parenthesis, you will see information about any arguments that the function requires.

Build helloworld.cpp#

Next, you'll create a tasks.json file to tell VS Code how to build (compile) the program. This task will invoke the g++ compiler to create an executable file based on the source code.

From the main menu, choose Terminal > Configure Default Build Task. In the dropdown, which will display a tasks dropdown listing various predefined build tasks for C++ compilers. Choose g++.exe build active file, which will build the file that is currently displayed (active) in the editor.

This will create a tasks.json file in a .vscode folder and open it in the editor.

Your new tasks.json file should look similar to the JSON below:

{
  "tasks": [
    {
      "type": "cppbuild",
      "label": "C/C++: g++.exe build active file",
      "command": "C:/msys64/mingw64/bin/g++.exe",
      "args": ["-g", "${file}", "-o", "${fileDirname}\\${fileBasenameNoExtension}.exe"],
      "options": {
        "cwd": "${fileDirname}"
      },
      "problemMatcher": ["$gcc"],
      "group": {
        "kind": "build",
        "isDefault": true
      },
      "detail": "compiler: C:/msys64/mingw64/bin/g++.exe"
    }
  ],
  "version": "2.0.0"
}

The command setting specifies the program to run; in this case that is g++. The args array specifies the command-line arguments that will be passed to g++. These arguments must be specified in the order expected by the compiler. This task tells g++ to take the active file (${file}), compile it, and create an executable file in the current directory (${fileDirname}) with the same name as the active file but with the .exe extension (${fileBasenameNoExtension}.exe), resulting in helloworld.exe for our example.

Note: You can learn more about tasks.json variables in the variables reference.

The label value is what you will see in the tasks list; you can name this whatever you like.

The "isDefault": true value in the group object specifies that this task will be run when you press Ctrl+Shift+B. This property is for convenience only; if you set it to false, you can still run it from the Terminal menu with Tasks: Run Build Task.

Running the build#

  1. Go back to helloworld.cpp. Your task builds the active file and you want to build helloworld.cpp.

  2. To run the build task defined in tasks.json, press Ctrl+Shift+B or from the Terminal main menu choose Run Build Task.

  3. When the task starts, you should see the Integrated Terminal panel appear below the source code editor. After the task completes, the terminal shows output from the compiler that indicates whether the build succeeded or failed. For a successful g++ build, the output looks something like this:

  4. Create a new terminal using the + button and you'll have a new terminal with the helloworld folder as the working directory. Run dir and you should now see the executable helloworld.exe.

  5. You can run helloworld in the terminal by typing helloworld.exe (or .\helloworld.exe if you use a PowerShell terminal).

Note: You might need to press Enter a couple of times initially to see the PowerShell prompt in the terminal. This issue should be fixed in a future release of Windows.

Modifying tasks.json#

You can modify your tasks.json to build multiple C++ files by using an argument like "${workspaceFolder}\\*.cpp" instead of ${file}. This will build all .cpp files in your current folder. You can also modify the output filename by replacing "${fileDirname}\\${fileBasenameNoExtension}.exe" with a hard-coded filename (for example "${workspaceFolder}\\myProgram.exe").

Debug helloworld.cpp#

Next, you'll create a launch.json file to configure VS Code to launch the GDB debugger when you press F5 to debug the program.

  1. From the main menu, choose Run > Add Configuration... and then choose C++ (GDB/LLDB).
  2. You'll then see a dropdown for various predefined debugging configurations. Choose g++.exe build and debug active file.

VS Code creates a launch.json file, opens it in the editor, and builds and runs 'helloworld'.

{
  "version": "0.2.0",
  "configurations": [
    {
      "name": "g++.exe - Build and debug active file",
      "type": "cppdbg",
      "request": "launch",
      "program": "${fileDirname}\\${fileBasenameNoExtension}.exe",
      "args": [],
      "stopAtEntry": false,
      "cwd": "${fileDirname}",
      "environment": [],
      "externalConsole": false,
      "MIMode": "gdb",
      "miDebuggerPath": "C:\\msys64\\mingw64\\bin\\gdb.exe",
      "setupCommands": [
        {
          "description": "Enable pretty-printing for gdb",
          "text": "-enable-pretty-printing",
          "ignoreFailures": true
        }
      ],
      "preLaunchTask": "C/C++: g++.exe build active file"
    }
  ]
}

The program setting specifies the program you want to debug. Here it is set to the active file folder ${fileDirname} and active filename with the .exe extension ${fileBasenameNoExtension}.exe, which if helloworld.cpp is the active file will be helloworld.exe.

By default, the C++ extension won't add any breakpoints to your source code and the stopAtEntry value is set to false.

Change the stopAtEntry value to true to cause the debugger to stop on the main method when you start debugging.

Note: The preLaunchTask setting is used to specify task to be executed before launch. Make sure it is consistent with the tasks.json file label setting.

Start a debugging session#

  1. Go back to helloworld.cpp so that it is the active file.
  2. Press F5 or from the main menu choose Run > Start Debugging. Before you start stepping through the source code, let's take a moment to notice several changes in the user interface:
  • The Integrated Terminal appears at the bottom of the source code editor. In the Debug Output tab, you see output that indicates the debugger is up and running.

  • The editor highlights the first statement in the main method. This is a breakpoint that the C++ extension automatically sets for you:

  • The Run view on the left shows debugging information. You'll see an example later in the tutorial.

  • At the top of the code editor, a debugging control panel appears. You can move this around the screen by grabbing the dots on the left side.

Step through the code#

Now you're ready to start stepping through the code.

  1. Click or press the Step over icon in the debugging control panel.

    This will advance program execution to the first line of the for loop, and skip over all the internal function calls within the vector and string classes that are invoked when the msg variable is created and initialized. Notice the change in the Variables window on the left.

    In this case, the errors are expected because, although the variable names for the loop are now visible to the debugger, the statement has not executed yet, so there is nothing to read at this point. The contents of msg are visible, however, because that statement has completed.

  2. Press Step over again to advance to the next statement in this program (skipping over all the internal code that is executed to initialize the loop). Now, the Variables window shows information about the loop variables.

  3. Press Step over again to execute the cout statement. (Note that as of the March 2019 release, the C++ extension does not print any output to the Debug Console until the loop exits.)

  4. If you like, you can keep pressing Step over until all the words in the vector have been printed to the console. But if you are curious, try pressing the Step Into button to step through source code in the C++ standard library!

    To return to your own code, one way is to keep pressing Step over. Another way is to set a breakpoint in your code by switching to the helloworld.cpp tab in the code editor, putting the insertion point somewhere on the cout statement inside the loop, and pressing F9. A red dot appears in the gutter on the left to indicate that a breakpoint has been set on this line.

    Then press F5 to start execution from the current line in the standard library header. Execution will break on cout. If you like, you can press F9 again to toggle off the breakpoint.

    When the loop has completed, you can see the output in the Integrated Terminal, along with some other diagnostic information that is output by GDB.

Set a watch#

Sometimes you might want to keep track of the value of a variable as your program executes. You can do this by setting a watch on the variable.

  1. Place the insertion point inside the loop. In the Watch window, click the plus sign and in the text box, type word, which is the name of the loop variable. Now view the Watch window as you step through the loop.

  2. Add another watch by adding this statement before the loop: int i = 0;. Then, inside the loop, add this statement: ++i;. Now add a watch for i as you did in the previous step.

  3. To quickly view the value of any variable while execution is paused on a breakpoint, you can hover over it with the mouse pointer.

C/C++ configurations#

If you want more control over the C/C++ extension, you can create a c_cpp_properties.json file, which will allow you to change settings such as the path to the compiler, include paths, C++ standard (default is C++17), and more.

You can view the C/C++ configuration UI by running the command C/C++: Edit Configurations (UI) from the Command Palette (Ctrl+Shift+P).

This opens the C/C++ Configurations page. When you make changes here, VS Code writes them to a file called c_cpp_properties.json in the .vscode folder.

Here, we've changed the Configuration name to GCC, set the Compiler path dropdown to the g++ compiler, and the IntelliSense mode to match the compiler (gcc-x64)

Visual Studio Code places these settings in .vscode\c_cpp_properties.json. If you open that file directly, it should look something like this:

{
  "configurations": [
    {
      "name": "GCC",
      "includePath": ["${workspaceFolder}/**"],
      "defines": ["_DEBUG", "UNICODE", "_UNICODE"],
      "windowsSdkVersion": "10.0.18362.0",
      "compilerPath": "C:/msys64/mingw64/bin/g++.exe",
      "cStandard": "c17",
      "cppStandard": "c++17",
      "intelliSenseMode": "windows-gcc-x64"
    }
  ],
  "version": 4
}

You only need to add to the Include path array setting if your program includes header files that are not in your workspace or in the standard library path.

Compiler path#

The extension uses the compilerPath setting to infer the path to the C++ standard library header files. When the extension knows where to find those files, it can provide features like smart completions and Go to Definition navigation.

The C/C++ extension attempts to populate compilerPath with the default compiler location based on what it finds on your system. The extension looks in several common compiler locations.

The compilerPath search order is:

  • First check for the Microsoft Visual C++ compiler
  • Then look for g++ on Windows Subsystem for Linux (WSL)
  • Then g++ for Mingw-w64.

If you have Visual Studio or WSL installed, you may need to change compilerPath to match the preferred compiler for your project. For example, if you installed Mingw-w64 version 8.1.0 using the i686 architecture, Win32 threading, and sjlj exception handling install options, the path would look like this: C:\Program Files (x86)\mingw-w64\i686-8.1.0-win32-sjlj-rt_v6-rev0\mingw64\bin\g++.exe.

Troubleshooting#

MSYS2 is installed, but g++ and gdb are still not found#

You must follow the steps on the MSYS2 website and use the MSYS CLI to install Mingw-w64, which contains those tools.

MinGW 32-bit#

If you need a 32-bit version of the MinGW toolset, consult the Downloading section on the MSYS2 wiki. It includes links to both 32-bit and 64-bit installation options.

Next steps#

  • Explore the VS Code User Guide.
  • Review the Overview of the C++ extension.
  • Create a new workspace, copy your .vscode JSON files to it, adjust the necessary settings for the new workspace path, program name, and so on, and start coding!
### 配置 C++ 编译器和调试环境 要在 Visual Studio Code 中设置 C++ 的编译器和调试环境,可以按照以下方法操作: #### 1. 安装必要的工具链 为了能够成功编译和运行 C++ 程序,需要先安装一个合适的工具链。通常推荐使用 MinGW 工具集中的 GCC/G++ 编译器以及 GDB 调试器。 可以通过安装 MinGW 来获取这些工具[^2]。MinGW 提供了一个完整的开发环境,其中包括 `g++`、`gcc` 和 `gdb` 等必要组件。确保将其路径添加到系统的环境变量中以便 VSCode 可以找到它们。 #### 2. 安装 VSCode 插件 在 VSCode 中打开扩展市场,搜索并安装 **C/C++** 扩展(由 Microsoft 提供),该扩展提供了 IntelliSense 支持以及其他功能来增强 C++ 开发体验[^1]。 另外还可以考虑安装其他辅助插件如 **Code Runner** 或者 **CMake Tools** 来进一步提升工作效率: - 使用 Code Runner 可以方便地执行单个文件而无需复杂的构建过程。 - 如果项目较大,则可能需要用到 CMake 进行更高级别的管理;此时应同时安装 cmake 和相应的 CMake Tools 插件。 #### 3. 创建 launch.json 文件用于调试配置 要启用程序的断点调试等功能,在工作区根目录下创建 .vscode 文件夹,并在里面新建名为 *launch.json* 的 JSON 格式的配置文件。以下是基本模板的一个例子: ```json { "version": "0.2.0", "configurations": [ { "name": "(gdb) Launch", "type": "cppdbg", "request": "launch", "program": "${workspaceFolder}/your_program_name.exe", "args": [], "stopAtEntry": false, "cwd": "${workspaceFolder}", "environment": [], "externalConsole": true, "MIMode": "gdb", "miDebuggerPath": "/path/to/gdb", "setupCommands": [ { "description": "Enable pretty-printing for gdb", "text": "-enable-pretty-printing", "ignoreFailures": true } ], "preLaunchTask": "build" } ] } ``` 注意替换 `${workspaceFolder}/your_program_name.exe` 为你实际生成的目标可执行文件的位置,还有 `/path/to/gdb` 应指向已安装好的 GDB 实际位置。 #### 4. 设置 tasks.json 自动化构建流程 同样位于 `.vscode/` 下面还需要定义另一个重要文件叫做 *tasks.json*,用来描述如何调用外部命令完成源码编译的任务。这里给出一段简单的 g++ 构建脚本作为参考: ```json { "tasks": [ { "label": "build", "type": "shell", "command": "g++", "args": [ "-g", "${file}", "-o", "${fileDirname}/${fileBasenameNoExtension}" ], "group": { "kind": "build", "isDefault": true }, "problemMatcher": ["$gcc"] } ] } ``` 此任务会接受当前活动文档(`${file}`),通过指定参数 `-g` 添加调试信息后交给 g++ 处理最终输出二进制成果至同一目录下的同名无后缀形式命名的新文件里去。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值