JDK1.8逐字逐句带你理解ConcurrentHashMap(2)

本文是ConcurrentHashMap系列的第二篇,主要介绍其线程安全实现,包括采用的CAS算法和缩小锁粒度的设计。此外,还探讨了数据存储结构、重要成员变量及内部类的作用,如Node、TreeNode和ForwordingNode,为理解 ConcurrentHashMap 的工作原理奠定基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:

在上一篇博文我们介绍了ConcurrentHashMap在jdk1.8中所必要的知识,作为基础入门。因为jdk1.8的ConcurrentHashMap做了太多的变动,所以新知识学习是必要的。今天是ConcurrentHashMap的第二篇,第二篇主要是认识ConcurrentHashMap,我将会介绍一下它的关键成员变量和一些关键的类。大家可以结合前几篇博文的HashMap的知识,很多还是很相似的。笔者目前整理的一些blog针对面试都是超高频出现的。大家可以点击链接:http://blog.youkuaiyun.com/u012403290

如何实现线程安全:
我们都知道ConcurrentHashMap核心是线程安全的,那么它又是用什么来实现线程安全的呢?在jdk1.8中主要是采用了CAS算法实现线程安全的。在上一篇博文中已经介绍了CAS的无锁操作,这里不再赘述。同时它通过CAS算法又实现了3种原子操作(线程安全的保障就是操作具有原子性),下面我赋值了源码分别表示哪些成员变量采用了CAS算法,然后又是哪些方法实现了操作的原子性:

  // Unsafe mechanics  CAS保障了哪些成员变量操作是原子性的

    private static final sun.misc.Unsafe U;
    private static final long LOCKSTATE;
      static {
            try {
                U = sun.misc.Unsafe.getUnsafe();
                Class<?> k = TreeBin.class; //操作TreeBin,后面会介绍这个类
                LOCKSTATE = U.objectFieldOffset
                    (k.getDeclaredField("lockState"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
--------------------------------------------------------------------------------------
    private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
        //以下变量会在下面介绍到
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                (k.getDeclaredField("cellsBusy"));
            Class<?> ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                (ck.getDeclaredField("value"));
            Class<?> ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }




//3个原子性操作方法:

    /* ---------------- Table element access -------------- */

    /*
     * Volatile access methods are used for table elements as well as
     * elements of in-progress next table while resizing.  All uses of
     * the tab arguments must be null checked by callers.  All callers
     * also paranoically precheck that tab's length is not zero (or an
     * equivalent check), thus ensuring that any index argument taking
     * the form of a hash value anded with (length - 1) is a valid
     * index.  Note that, to be correct wrt arbitrary concurrency
     * errors by users, these checks must operate on local variables,
     * which accounts for some odd-looking inline assignments below.
     * Note that calls to setTabAt always occur within locked regions,
     * and so in principle require only release ordering, not
     * full volatile semantics, but are currently coded as volatile
     * writes to be conservative.
     */

    @SuppressWarnings("unchecked")
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值