Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and
C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will
be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters:
an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
————————————————————集训6.2的分割线————————————————————
前言:整整做了一天。拓扑排序本身并没有那么难,但是姿势不对,就没有可行性了。因为这个并不是输入所有的边之后再让你排序的模板题,而是每次输入一条边,都要重新进行拓扑排序,并且要判断这一次是否产生了唯一解或者是否成环。
题意:很久才弄清楚。输入数字N,(要把A~Z的前N个字母进行拓扑排序)。然后输入M,(存在M条边)。
如果在某一次输入之后产生环,输出是哪一次。
如果确定了完整且唯一的拓扑序,输出在第几次得到,以及这个序列。
如果既没有产生环,而且不能确定唯一的拓扑序,输出cannot。(神题啊)
思路:每一次输入之后,进行一次拓扑排序。正确姿势如下:
For(i = 0 ~ n) {//对每个顶点
For(k = 0 ~ n) {
找到一个入度为0且未曾访问的点cur;
}
For(与该点相连所有的边) {
入度--;
}
vis[cur] = true;
}
这道神题的关键点是做判断的优先级。一定要先判断是否成环,然而想要判断是否成环则要等到在剩下的点中找不到入度为0的点的时候。而且初次判断结束后,不必再重新判断(Fu k)。
代码如下:
/*
ID: j.sure.1
PROG:
LANG: C++
*/
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
using namespace std;
/****************************************/
const int N = 30, M = N*N;
bool vis[N], confuse, go_on;
int n, m, indeg[N], degree[N];
vector <int> G[N], ans;
void init()
{
ans.clear();
memcpy(degree, indeg, sizeof(indeg));
memset(vis, 0, sizeof(vis));
confuse = false;
}
int Topsort()
{
init();
for(int k = 0; k < n; k++) {
int zero = 0, alph = 0, cur;
for(int i = 0; i < n; i++) {
if(vis[i]) continue;
if(!degree[i]) {
cur = i;
zero++;
}
}
if(zero) {
for(int i = 0; i < G[cur].size(); i++) {
degree[G[cur][i]]--;
}
vis[cur] = true;
ans.push_back(cur);
}
if(zero == 0)
return 1;//最高优先级别,但是必须在所有0入度点访问完之后才能肯定
if(zero > 1)
confuse = true;//多个入度为0,继续访问入度为0的点
}
if(confuse) return 2;
return 0;
}
void PR(int ret, int rela)
{
if(ret == 1) {
go_on = false;
printf("Inconsistency found after %d relations.\n", rela);
}
else if(ret == 0) {
go_on = false;
printf("Sorted sequence determined after %d relations: ", rela);
for(int j = 0; j < n-1; j++)
printf("%c", ans[j]+'A');
printf("%c.\n", ans[n-1]+'A');
}
else if(rela == m && ret == 2) {
puts("Sorted sequence cannot be determined.");
}
}
int main()
{
#ifdef J_Sure
freopen("1094.in", "r", stdin);
//freopen(".out", "w", stdout);
#endif
while(scanf("%d%d", &n, &m),n) {
for(int i = 0; i < N; i++)
G[i].clear();
memset(indeg, 0, sizeof(indeg));
go_on = true;
char a, b; int u, v;
int ret;
for(int i = 1; i <= m; i++) {
scanf(" %c<%c", &a, &b);
u = a - 'A'; v = b - 'A';
if(go_on) {
indeg[v]++;
G[u].push_back(v);
ret = Topsort();
PR(ret, i);
}
}
}
return 0;
}