POJ - 1094 Sorting It All Out

本文介绍了一种基于拓扑排序的问题解决方法,通过处理一系列字符间的大小关系来确定字符的正确排序顺序。文章详细解释了如何使用Kahn算法来判断字符间的关系是否形成闭环以及是否能确定最终的排序。此外,还提供了具体的代码实现案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sorting It All Out
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 35720 Accepted: 12569

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three: 

Sorted sequence determined after xxx relations: yyy...y. 
Sorted sequence cannot be determined. 
Inconsistency found after xxx relations. 

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source


nyoj上也有这道题,但是数据比较水。

拓扑排序。每输入一行都要进行拓扑排序。需要判断是否存在环,是否已经排序成功。

判定环:利用Kahn算法进行删点后,如果还存在入度大于0的点,则存在环。

判定排序成功:如果每次只能删一个点,且没有环,则排序成功。

如果有环,或者排序成功,就不需要继续拓扑排序了。

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
int n,m,in[30],buf[30];
vector<int> vec[30];
int topo()
{
    int degree[30],ok=1,num=0,cnt=0;
    memcpy(degree,in,sizeof in);
    queue<int> q;
    for(int i=0;i<n;i++)
    {
        if(degree[i]==0)
        {
            cnt++;
            q.push(i);
        }
        if(cnt>1)
            ok=0;
    }
    while(!q.empty())
    {
        int top=q.front(); q.pop();
        buf[num++]=top;
        cnt=0;
        for(int i=0;i<vec[top].size();i++)
        {
            int now=vec[top][i];
            degree[now]--;
            if(!degree[now])
            {
                cnt++;
                q.push(now);
            }
        }
        if(cnt>1)//未完成
            ok=0;
    }
    for(int i=0;i<n;i++)
        if(degree[i])
            return -1;//有环
    return ok;
}
int main()
{
    char op[5];
    while(scanf("%d%d",&n,&m) && n+m)
    {
        int flag=0;
        for(int i=0;i<n;i++)
            vec[i].clear();
        memset(in,0,sizeof in);
        for(int i=1;i<=m;i++)
        {
            scanf("%s",op);
            in[op[2]-'A']++;
            vec[op[0]-'A'].push_back(op[2]-'A');
            if(flag==1 || flag==-1)
                continue;
            flag=topo();
            if(flag==1)
            {
                printf("Sorted sequence determined after %d relations: ",i);
                for(int i=0;i<n;i++)
                    printf("%c",buf[i]+'A');
                printf(".\n");
            }
            if(flag==-1)
                printf("Inconsistency found after %d relations.\n",i);
        }
        if(flag==0)
            printf("Sorted sequence cannot be determined.\n");
    }
    return 0;
}
/*
 6 5
 A<D
 B<C
 A<B
 D<E
 C<D

6 6
 A<D
 B<C
 E<F
 B<A
 D<E
 A<B

 6 6
 D<E
 B<F
 A<D
 F<C
 A<F
 E<B

 3 3
 A<B
 B<C
 C<A

 4 6
 A<B
 A<C
 B<C
 C<D
 B<D
 A<B

 3 2
 A<B
 B<A

 2 2
 A<B
 B<A

 26 1
 A<Z

 0 0
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值