"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
self.val = val
self.left, self.right = None, None
"""classSolution:"""
@param root: The root of the binary search tree.
@param k1 and k2: range k1 to k2.
@return: Return all keys that k1<=key<=k2 in ascending order.
"""defsearchRange(self, root, k1, k2):# write your code here
L = []
self.preOrderVisit(root, k1, k2, L)
L = sorted(L)
return L
defpreOrderVisit(self, root, k1, k2, L):if root == None:
returnelse:
if root.val >= k1 and root.val <= k2:
L.append(root.val)
self.preOrderVisit(root.left, k1, k2, L)
self.preOrderVisit(root.right, k1, k2, L)
java
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/publicclassSolution {/**
* @param root: The root of the binary search tree.
* @param k1 and k2: range k1 to k2.
* @return: Return all keys that k1<=key<=k2 in ascending order.
*/public ArrayList<Integer> searchRange(TreeNode root, int k1, int k2) {
// write your code here
ArrayList<Integer> L = new ArrayList();
preOrderVisit(root, L, k1, k2);
Collections.sort(L);
return L;
}
privatestaticvoidpreOrderVisit(TreeNode root, ArrayList<Integer> L, int k1, int k2){
if(root == null){
return;
}
else{
if(root.val >= k1 && root.val <=k2){
L.add(root.val);
}
preOrderVisit(root.left, L, k1, k2);
preOrderVisit(root.right, L, k1, k2);
}
}
}