预测一个 Y = 0.1 X + 0.3 一次函数。
import tensorflow as tf
import numpy as np
#测试数据
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
#初始化权重和偏置
Weights = tf.Variable(tf.random.uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
#输出激励值
y = Weights * x_data + biases
#设置损失函数
loss = tf.reduce_mean(tf.square(y - y_data))
#设置SGD 学习率为0.5
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#初始化
init = tf.compat.v1.global_variables_initializer()
sess = tf.compat.v1.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
测试结果:
更新了tensorflow2