110.平衡二叉树
int getHeight(TreeNode* node){
if(node == nullptr){
return 0;
}
int leftHeight = getHeight(node->left);
if(leftHeight == -1){
return -1;
}
int rightHeight = getHeight(node->right);
if(rightHeight == -1){
return -1;
}
if(abs(leftHeight - rightHeight) > 1){
return -1;
}else{
return 1 + max(leftHeight, rightHeight);
}
}
bool isBalanced(TreeNode* root) {
return getHeight(root) == -1 ? false : true;
}
257.二叉树的所有路径
//回溯法
void traverse(TreeNode* node, vector<int>& path, vector<string>& result){
path.push_back(node->val);
if(node->left == nullptr && node->right == nullptr){
string p;
int i = 0;
for(; i < path.size()-1; i++){
p += to_string(path[i]);
p += "->";
}
p += to_string(path[i]);
result.push_back(p);
return;
}
if(node->left){
traverse(node->left, path, result);
path.pop_back();
}
if(node->right){
traverse(node->right, path, result);
path.pop_back();
}
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
traverse(root, path, result);
return result;
}
404.左叶子之和
int getLeft(TreeNode* node){
if(node == nullptr) return 0;
int left = getLeft(node->left);
if(node->left && !node->left->left && !node->left->right){
left = node->left->val;
}
int right = getLeft(node->right);
return left + right;
}
int sumOfLeftLeaves(TreeNode* root) {
return getLeft(root);
}
222.完全二叉树的节点个数
//掌握O(logN^2)方法
int countNodes(TreeNode* root) {
int result = 0;
if(root == nullptr) return 0;
int leftDepth = 0, rightDepth = 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
while(left){
left = left->left;
leftDepth++;
}
while(right){
right = right->right;
rightDepth++;
}
if(rightDepth == leftDepth){
return (2 << leftDepth) - 1;
}else{
return countNodes(root->left) + countNodes(root->right) + 1;
}
}