【Day37 文献泛读】Bayesian decision theory in sensorimotor control

这篇文献探讨了神经系统如何在信号处理中考虑变异性与噪声,并指出人类行为接近于贝叶斯决策理论所预测的理想行为。文章讨论了在不确定性环境下,贝叶斯统计提供了解决问题的系统方法,以及在运动控制和感知中如何进行贝叶斯整合。研究发现,随着感官反馈中的噪声增加,个体会增加先验权重,减少对感官反馈的依赖,这与最优的贝叶斯统计预测相符。同时,贝叶斯过程可能也是感觉处理的基本元素,有助于理解不同模态线索如何被整合成单一估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读文献:

Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. trends in cognitive sciences, 10(7), 319-326.

文献链接:

Bayesian decision theory in sensorimotor control - ScienceDirect

Abstract

1) Nervous system needs to estimate variability and noise when processing signials.

2) Human behaviour is close to that predicted by Bayesian Decision Theory, which defines optimal behaviour in a world characterized by uncertainty, and provides a coherent way of describing sensorimotor processes.


Introduction

1) Determining movement is a decision process in the central nervous system always companying with uncertainty.

 

→ Bayesian statistics provides a systematic way of solving problems in the presence of uncertainty.

2) Decision theory: The cost of each movement (such as energy consumed) must be weighed against the potential rewards that can be obtained by moving.

→ Rational choice of the movement is that maximizes utility according to decision theory.


Estimation using Bayes rule


Bayesian integration in motor control

 

1) With increasing noise in the sensory feedback subjects should increase the weight of the prior and decrease the weight of their sensory feedback in their final estimate of the location.

(详见Day36阅读文献)

在Day36文献中,上图b的纵轴为slope,而本文献中同样的图纵轴为weight of prior

猜测原因:在上图a中,deviation from target即为posterior的估计值,根据贝叶斯模型posterior最优估计的均值为:E(posterior)=αE(prior)+(1-α)E(likelihood),因此上图a和b中的slope即prior的weight,值为

2) From Fig. 1(e), subjects in this task exhibit a strategy very similar to the one predicted by optimal Bayesian statistics (the red curve).


Bayesian integration in perception

human perception is close to the Bayesian optimal suggesting the Bayesian process may be a fundamental element of sensory processing.


Bayesian cue combination

1) Bayesian processes can also be used to understand how cues from two different modalities can be combined into a single estimate.

2) Calculating this optimally in a Bayesian way means that the weighing will depend on the relative uncertainties in the cues.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余阿Adzuki

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值