使用Kernel Memory进行RAG评估:AI助力企业知识管理新突破

        在现代企业知识管理中,随着业务的不断发展和扩展,各种文档和数据呈现爆炸式增长。为了有效且高效地管理这些知识,企业通常会导入大量文档。然而,当涉及到对文档切片质量和回答准确度的判断时,传统的人工方法显得既费时又费力。既然我们已经在使用AI技术,那么能否让AI来接管这部分工作?答案是肯定的,这正是RAG评估的用武之地。

https://github.com/explodinggradients/ragas?tab=readme-ov-file

        今天,我们将深入探讨一个名为Kernel Memory中的一个实验性项目,它还未正式发布,但已经在AI社区中引起了广泛关注。Kernel Memory中的Evaluation模块包含两部分:TestSetGenerator和TestSetEvaluator,分别用于生成测试数据集和基于数据集进行质量评估。使用这些工具,我们可以显著降低人工成本,提高文档处理的效率和准确性。

TestSetGenerator:生成测试数据集

        在进行Kernel Memory评估之前,首先需要创建一个测试集,这个测试集包含查询和预期的答案。虽然这是一个手工过程,但对于大数据集来说,可能非常繁琐。为了简化这个过程,我们提供了一个生成器,它可以从给定的Kernel Memory内存和索引中创建测试集。

以下是一个简单的示例代码:

using Microsoft.KernelMemory.Evaluation;

var testSetGenerator = new TestSetGeneratorBuilder(memoryBuild
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许泽宇的技术分享

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值