一:Stage 划分算法解密
1.spark Application 中可以因为不同的action触发众多的JOB,也就是说一个Application可以产生很多job,每个job是由一个或者多个stage构成的,后面的的stage依赖前面的Stage,也就是说只有只有前面依赖的Stage计算完成,后面的Stage才会运行
2.Stage 划分的时候会产生宽依赖,什么算子会产生宽依赖?比如reduceByKey、groupByKey、等等。
3.以RDD的算子collect为列:
<span style="font-size:18px;"> /**
* Return an array that contains all of the elements in this RDD.
*
* @note this method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
}</span>
最终调用:
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
最后由DAGScheduler来进行任务的Stage划分:
def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
<span style="background-color: rgb(255, 0, 0);">val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)</span>
Await.ready(waiter.completionFuture, atMost = Duration.Inf)
waiter.completionFuture.value.get match {
case scala.util.Success(_) =>
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
case scala.util.Failure(exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
// SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
val callerStackTrace = Thread.currentThread().getStackTrace.tail
exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
throw exception
}
}
我们关注 submitJob 这个方法:
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
}
val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
// Return immediately if the job is running 0 tasks
return new JobWaiter[U](this, jobId, 0, resultHandler)
}
assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
我们可以看到这里使用了一个消息循环体来post job提交的消息:
EventLoop 这里有一个 LinkedBlockingDeque 来做消息循环队列
private val eventThread = new Thread(name) {
setDaemon(true)
override def run(): Unit = {
try {
while (!stopped.get) {
val event = eventQueue.take()
try {
onReceive(event)
} catch {
case NonFatal(e) => {
try {
onError(e)
} catch {
case NonFatal(e) => logError("Unexpected error in " + name, e)
}
}
}
}
} catch {
case ie: InterruptedException => // exit even if eventQueue is not empty
case NonFatal(e) => logError("Unexpected error in " + name, e)
}
}
而DAGScheduler 通过DAGSchedulerEventProcessLoop 的实例来进行任务的调度:
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
case StageCancelled(stageId) =>
dagScheduler.handleStageCancellation(stageId)
case JobCancelled(jobId) =>
dagScheduler.handleJobCancellation(jobId)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId) =>
dagScheduler.handleExecutorLost(execId, fetchFailed = false)
case BeginEvent(task, taskInfo) =>
dagScheduler.handleBeginEvent(task, taskInfo)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
case completion: CompletionEvent =>
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason, exception) =>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
这样DAGScheduler 对外就可以用统一的方式来获取任务的执行的相关的事件(使用队列来解耦)
最终调用handleJobSubmitted 这个方法:
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
submitWaitingStages()
}
创建newResultStage:
private def newResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId)
val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}
我们关注:getParentStagesAndId 方法:
private def getParentStagesAndId(rdd: RDD[_], firstJobId: Int): (List[Stage], Int) = {
val parentStages = getParentStages(rdd, firstJobId)
val id = nextStageId.getAndIncrement()
(parentStages, id)
}
parentStages 是一个scala.List[Stage] 数据结构,也就是Stage的父Stage集合
private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
val parents = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
// Kind of ugly: need to register RDDs with the cache here since
// we can't do it in its constructor because # of partitions is unknown
for (dep <- r.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
parents += getShuffleMapStage(shufDep, firstJobId)
case _ =>
waitingForVisit.push(dep.rdd)
}
}
}
}
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
parents.toList
}
这里使用广度优先搜索来搜索已经访问过的Stage
数据本地性在DAGScheduler 划分Stage阶段就已经完成了!!!
getShuffleMapStage : 获取当前Stage 依赖的父Stage
private def getShuffleMapStage(
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int): ShuffleMapStage = {
shuffleToMapStage.get(shuffleDep.shuffleId) match {
case Some(stage) => stage
case None =>
// We are going to register ancestor shuffle dependencies
getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId)
}
// Then register current shuffleDep
val stage = newOrUsedShuffleStage(shuffleDep, firstJobId)
shuffleToMapStage(shuffleDep.shuffleId) = stage
stage
}
}
获取Stage的时候,如果没有创建Stage就创建新的Stage,否则直接返回,在从后往前的回溯中会不断的创建新的Stage
我们回到handleJobSubmitted 这个方法中的 submitStage(finalStage):
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
这里递归的提交stage直到该Stage没有依赖的父Stage为止,也就是说父Stage会先进行计算,直到父Stage全部完成子Stage才会开始计算!
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)这里会还查看该Stage是否已经计算过,否则不参与计算
二:Task任务本地性
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
val job = s.activeJob.get
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
此处调用getPreferredLocs 来获取 TaskLocation的位置:
private def getPreferredLocsInternal(
rdd: RDD[_],
partition: Int,
visited: HashSet[(RDD[_], Int)]): Seq[TaskLocation] = {
// If the partition has already been visited, no need to re-visit.
// This avoids exponential path exploration. SPARK-695
if (!visited.add((rdd, partition))) {
// Nil has already been returned for previously visited partitions.
return Nil
}
// If the partition is cached, return the cache locations
val cached = getCacheLocs(rdd)(partition)
if (cached.nonEmpty) {
return cached
}
// If the RDD has some placement preferences (as is the case for input RDDs), get those
val rddPrefs = rdd.preferredLocations(rdd.partitions(partition)).toList
if (rddPrefs.nonEmpty) {
return rddPrefs.map(TaskLocation(_))
}
// If the RDD has narrow dependencies, pick the first partition of the first narrow dependency
// that has any placement preferences. Ideally we would choose based on transfer sizes,
// but this will do for now.
rdd.dependencies.foreach {
case n: NarrowDependency[_] =>
for (inPart <- n.getParents(partition)) {
val locs = getPreferredLocsInternal(n.rdd, inPart, visited)
if (locs != Nil) {
return locs
}
}
case _ =>
}
Nil
}
<pre name="code" class="java">TaskLocation 数据结构:保存了当前主机信息和executorId
new ExecutorCacheTaskLocation(host, executorId)最终从
val rddPrefs = rdd.preferredLocations(rdd.partitions(partition)).toListRDD中获取数据位置,而RDD中的getPreferredLocations是一个抽象方法,因此用户想要自定义RDD必须重写此方法
override def getPreferredLocations(split: Partition): Seq[String] = {
val hsplit = split.asInstanceOf[HadoopPartition].inputSplit.value
val locs: Option[Seq[String]] = HadoopRDD.SPLIT_INFO_REFLECTIONS match {
case Some(c) =>
try {
val lsplit = c.inputSplitWithLocationInfo.cast(hsplit)
val infos = c.getLocationInfo.invoke(lsplit).asInstanceOf[Array[AnyRef]]
Some(HadoopRDD.convertSplitLocationInfo(infos))
} catch {
case e: Exception =>
logDebug("Failed to use InputSplitWithLocations.", e)
None
}
case None => None
}
locs.getOrElse(hsplit.getLocations.filter(_ != "localhost"))
}
此方法为HadoopRDD的实现
数据本地性巧妙的借助了RDD中的getPreferredLocations 最大化的提高了效率,因为getPreferredLocations 中表现了每个Partion的数据本地性