Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences’ length is 1, so output 5.
两个并列的dynamic programming,一个记录截至到这一点,以这一点为结束点的,最大长度,一个记录到这一点的最大长度的递增序列有多少种。然后回过头在第一个长度的dynamic programming里找所有符合最大长度的节点,把到他们的各自的路径数目相加。
int findNumberOfLIS(vector<int>& nums) {
int len = nums.size();
if (len == 0) return 0;
vector<int> dp(len, 0);
vector<int> cnt(len, 1);
int maxlen = 0;
for (int i = 0; i < len; i++) {
int maxval = 0;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
maxval = max(maxval, dp[j]);
}
}
dp[i] = maxval + 1;
if (dp[i] > 1) {
int step = 0;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j] && dp[j] == maxval) step += cnt[j];
}
cnt[i] = step;
}
maxlen = max(maxlen, dp[i]);
}
int ans = 0;
for (int i = 0; i < len; i++) {
if (dp[i] == maxlen) ans += cnt[i];
}
return ans;
}