Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn’t one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
方法一:
brute-force, O(n^2)。不解释
int minSubArrayLen(int s, vector<int>& nums) {
int i, j, sum;
int minlen = INT_MAX;
for (i = 0; i < nums.size(); i++) {
sum = 0;
for (j = i; j < nums.size(); j++) {
sum += nums[j];
if (sum >= s) {
minlen = min(minlen, j - i + 1);
break;
}
}
}
if (minlen == INT_MAX) {
return 0;
}
else return minlen;
}
方法二:binary search
binary search必须在有序数组上进行,当对原始数据的连续性有要求时,不能在原有基础上sorting。但是累加求和确是一种构造非递减数列的有效方法,前提是数组里都是非负数。这里就是如此。我们可以在求和之后将所有的和存起来,然后将问题转化为寻找sum[i] + s 的lower bound的问题,这里就可以用binary search将原本O(n)的复杂度降到O(logn).
代码:
int minSubArrayLen(int s, vector<int>& nums) {
int i, j;
int minlen = INT_MAX;
int len = nums.size();
vector<int> sum(len + 1, 0);
for (i = 1; i <= len; i++) {
sum[i] = sum[i - 1] + nums[i - 1];
}
for (i = 1; i <= len; i++) {
int to_find = sum[i - 1] + s;
j = binary_search(sum, to_find, i, len);
if (j == -1) break;
else minlen = min(minlen, j - i + 1);
}
return minlen == INT_MAX ? 0 : minlen;
}
int binary_search(vector<int>& sum, int to_find, int st, int ed) {
if (st > ed) return -1;
if (st == ed) {
return sum[st] >= to_find ? st : -1;
}
int mid = (st + ed) / 2;
if (to_find == sum[mid]) {
return mid;
}
else if (to_find < sum[mid]) {
return binary_search(sum, to_find, st, mid);
}
else {
return binary_search(sum, to_find, mid + 1, ed);
}
}
这里也可以直接用STL 库函数,lower_bound。返回有序数组里第一个大于等于to_find的数。
upper_bound是返回第一个大于to_find 的数。
方法三:滑动窗法
上述两种都是在固定starting index后逐一确定。其实对每个starting index有相当大的重复操作。
这里可以用两个指针,two pointers. 维持左右边界。非常简便。
int minSubArrayLen(int s, vector<int>& nums) {
int left = 0, right = 0;
int minlen = INT_MAX;
int len = nums.size();
int sum = 0;
for (right = 0; right < len; right++) {
sum += nums[right];
while (sum >= s) {
minlen = min(minlen, right - left + 1);
sum -= nums[left++];
}
}
return minlen == INT_MAX ? 0 : minlen;
}