Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
解题思路:
(1)将数组递增排序
(2)依次枚举第一个加数
(3)设置两个指针分别指向第二个和第三个加数,第二个加数从前往后,第三个加数从后往前
(4)元素去重的方法
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums){
sort(nums.begin(), nums.end());//对数组元素进行递增排序
vector<vector<int>> res;
int numsSize = nums.size();
for (int i = 0; i < numsSize; i++)
{
//对元素nums[i]去重
if (i > 0 && nums[i] == nums[i-1])
continue;
int j = i+1;
int k = numsSize-1;
while (j < k)
{
int sum = nums[i]+nums[j]+nums[k];
if (sum < 0)
{
j++;
//对元素nums[j]去重
while (nums[j] == nums[j-1] && j < k)
{
j++;
}
}
else if (sum > 0)
{
k--;
//对元素nums[k]去重
while (nums[k] == nums[k+1] && j < k)
{
k--;
}
}
else
{
vector<int> temp(3);
temp[0] = nums[i];
temp[1] = nums[j++];
temp[2] = nums[k--];
res.push_back(temp);
//对元素nums[j]去重
while (nums[j] == nums[j-1] && j < k)
{
j++;
}
//对元素nums[k]去重
while (nums[k] == nums[k+1] && j < k)
{
k--;
}
}
}
}
return res;
}
};