elasticsearch2.1.0索引的相关操作

本文详细介绍了Elasticsearch 2.1.0版本中关于索引的各种操作,提供了经过测试的实战代码,确保可以直接应用于实际场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里记录一下elasticsearch2.1.0索引的相关的操作,代码都是自己经过测试可以直接使用的代码。

/**
 * es索引相关操作测试类
 * @author yujie.wang
 */
public class IndexOperator {

	private static String INDEX = "my_store";
	private static String TYPE = "products";

	
	/**
	 * 判断一个索引是否存在
	 * @param client
	 * @param index
	 */
	public void isExists(IndicesAdminClient client,String index){
		IndicesExistsResponse response = client.prepareExists(index).get();
		System.out.println(response.isExists() ? "exists" : "no");
		// another mthod
/*		IndicesExistsRequest request = new IndicesExistsRequest(index);
		IndicesExistsResponse response2 = indexClient.exists(request).actionGet();
		System.out.println(response2.isExists() ? "exists": " no");*/
	}
	
	/**
	 * 判断一个索引的类型是否存在
	 * @param client
	 * @param index
	 * @param type
	 */
	public void isTypeExists(IndicesAdminClient client , String index, String type){
		TypesExistsResponse response = client.prepareTypesExists(index).setTypes(type).get();
		System.out.println(response.isExists() ? " type exists": " no");
	}
	
	/**
	 * 创建一个索引
	 * @param client
	 * @param index
	 */
	public void createIndex(IndicesAdminClient client , String index){
		CreateIndexResponse response = client.prepareCreate(index).get();
		System.out.println(response.isAcknowledged() ? " create successfully": " create failed");
	}
/*	{
		"state": "open",
		"settings": {
		"index": {
		"creation_date": "1513589566589",
		"uuid": "d8C9DP04QdW9BUD2M6JBLg",
		"number_of_replicas": "1",
		"number_of_shards": "5",
		"version": {
		"created": "2010099"
		}
		}
		},
		"mappings": { },
		"aliases": [ ]
		}*/
	
	/**
	 * 指定setting和mapping信息创建索引
	 * @param client
	 * @param index
	 * @param type
	 */
	public void createIndexBySettingAndMapping(IndicesAdminClient client , String index,String type){
		Settings settings = Settings.builder().put("index.number_of_shards", 3).put("index.number_of_replicas", 2).build();
		XContentBuilder mapping = null;
		try {
			mapping = XContentFactory.jsonBuilder()
					.startObject()
						.startObject(type)
							.startObject("properties")
							 .startObject("name").field("type", "string").field("store", "yes").endObject()
	                         .startObject("sex").field("type", "string").field("store", "yes").endObject()
	                         .startObject("college").field("type", "string").field("store", "yes").endObject()
	                         .startObject("age").field("type", "integer").field("store", "yes").endObject()
	                         .startObject("school").field("type", "string").field("store", "yes").field("index", "not_analyzed").endObject()
	                     .endObject()
	                 .endObject()
	             .endObject();
		} catch (Exception e) {
			// TODO: handle exception
			System.out.println("exception: "+e);
		}
		CreateIndexResponse response = client.prepareCreate(index).setSettings(settings).addMapping(type, mapping).get();
		System.out.println(response.isAcknowledged() ? " create successfully": " create failed");
	}

	/*{
		"state": "open",
		"settings": {
		"index": {
		"creation_date": "1513592594874",
		"uuid": "d0R_IzukQSC8pXT7JkPpxA",
		"number_of_replicas": "2",
		"number_of_shards": "3",
		"version": {
		"created": "2010099"
		}
		}
		},
		"mappings": {
		"yujie_type": {
		"properties": {
		"sex": {
		"store": true,
		"type": "string"
		},
		"school": {
		"index": "not_analyzed",
		"store": true,
		"type": "string"
		},
		"name": {
		"store": true,
		"type": "string"
		},
		"age": {
		"store": true,
		"type": "integer"
		},
		"college": {
		"store": true,
		"type": "string"
		}
		}
		}
		},
		"aliases": [ ]
		}*/
	
	/**
	 * 删除索引
	 * @param client
	 * @param index
	 */
	public void deleteIndex(IndicesAdminClient client , String index){
		DeleteIndexResponse response = client.prepareDelete(index).get();
		System.out.println(response.isAcknowledged() ? " delete successfully": " delete failed");
	}
	
	/**
	 * 当索引不再使用时 可以关闭索引
	 * @param client
	 * @param index
	 */
	public void closeIndex(IndicesAdminClient client , String index){
		CloseIndexResponse response = client.prepareClose(index).get();
		System.out.println(response.isAcknowledged() ? " delete successfully": " delete failed");
	}
	
	/**
	 * 打开一个关闭的索引
	 * @param client
	 * @param index
	 */
	public void openIndex(IndicesAdminClient client , String index){
		OpenIndexResponse response = client.prepareOpen(index).get();
		System.out.println(response.isAcknowledged() ? " delete successfully": " delete failed");
	}
	
	
	/**
	 * 索引存在的情况下 为索引添加一个mapping
	 * @param client
	 * @param index
	 * @param type
	 */
	public void putMappingByIndex(IndicesAdminClient client , String index, String type){
		 XContentBuilder mappingBuilder = null;
		    try {
		        mappingBuilder = XContentFactory.jsonBuilder()
		                .startObject()
		                    .startObject(type)
		                        .startObject("properties")
		                            .startObject("name").field("type", "string").field("store", "yes").endObject()
		                            .startObject("sex").field("type", "string").field("store", "yes").endObject()
		                            .startObject("college").field("type", "string").field("store", "yes").endObject()
		                            .startObject("age").field("type", "long").field("store", "yes").endObject()
		                            .startObject("school").field("type", "string").field("store", "yes").field("index", "not_analyzed").endObject()
		                        .endObject()
		                    .endObject()
		                .endObject();
		    } catch (Exception e) {
		    	System.out.println("exception: "+ e);
		    }
		    PutMappingResponse response = client.preparePutMapping(index).setType(type).setSource(mappingBuilder).get();
		    System.out.println(response.isAcknowledged() ? " delete successfully": " delete failed");
	}
	
	/**
	 * 给一个索引设置别名
	 * @param client
	 * @param index
	 */
	public void addAlias(IndicesAdminClient client , String index, String alias){
		IndicesAliasesResponse response = client.prepareAliases().addAlias(index, alias).get();
		System.out.println(response.isAcknowledged() ? " add successfully": " add failed");
	}
	
	/**
	 * 判断一个别名是否存在
	 * @param client
	 * @param index
	 * @param alias
	 */
	public void isAliasesExist(IndicesAdminClient client , String index, String alias){
		AliasesExistResponse response = client.prepareAliasesExist(alias).get();
		System.out.println(response.exists() ? " alias exists": "  alias not exists");
	}
	
	/**
	 * 更新索引的分片信息,只能更新分片副本信息,主分片一旦分配就不能改变
	 * @param client
	 * @param index
	 */
	public void updateIndexSetting(IndicesAdminClient client , String index){
		Settings settings = Settings.builder().put("index.number_of_replicas", 1).build();
		UpdateSettingsResponse response = client.prepareUpdateSettings(index).setSettings(settings).get();
		System.out.println(response.isAcknowledged() ? " update successfully": " update failed");
	}
	
}



内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值