No architectures to compile for (ONLY_ACTIVE_ARCH=YES, active arch=x86_64, VALID_ARCHS=i386)

本文解答了在使用iPhone模拟器编译64位代码时遇到的架构错误问题,提供了通过调整BuildSettings和ValidArchitectures设置来解决的方法。此解决方案可能会影响编译速度,但能确保应用的兼容性和正常运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用iphone模拟器64位,我得到以下架构错误。

No architectures to compile for (ONLY_ACTIVE_ARCH=YES, active arch=x86_64, VALID_ARCHS=i386)

经过一番搜索在Stack Overflow上搜到答案,是这么说的

have a look under your build settings, check that the setting Build Active Architecture Only is set to No (might make compiling a bit slower but should fix the problem)

Also check that the Valid Architectures has arm64 in the list

Note if you are getting an error when submitting an app saying "Apps that include an arm64 architecture are required to include both armv7 and armv7s architectures”, setting it to No will also fix this


也就是在工程中找到 Build Settings->Build Active Architecture Only然后将Debug设置为No,同时检查这个Valid Architectures ,有arm64,这样就解决问题了,这样可能会使编译器变慢,但是可以解决问题。

cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 #define CUDNN_MAJOR 8 #define CUDNN_MINOR 9 #define CUDNN_PATCHLEVEL 7 -- #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL) /* cannot use constexpr here since this is a C-only file */ (base) whyerwang@whyerwang-Lenovo-ThinkBook-16p-Gen-5:~/cudnn_samples_v8/mnistCUDNN$ cp -r /usr/src/cudnn_samples_v8/ $HOME cd ~/cudnn_samples_v8/mnistCUDNN make clean && make ./mnistCUDNN # 显示"Test passed!"即成功[^2] rm -rf *o rm -rf mnistCUDNN CUDA_VERSION is 12090 Linking agains cublasLt = true CUDA VERSION: 12090 TARGET ARCH: x86_64 HOST_ARCH: x86_64 TARGET OS: linux SMS: 50 53 60 61 62 70 72 75 80 86 87 90 nvcc warning : Support for offline compilation for architectures prior to '<compute/sm/lto>_75' will be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning). test.c:1:10: fatal error: FreeImage.h: 没有那个文件或目录 1 | #include "FreeImage.h" | ^~~~~~~~~~~~~ compilation terminated. >>> WARNING - FreeImage is not set up correctly. Please ensure FreeImage is set up correctly. <<< [@] /usr/local/cuda/bin/nvcc -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -ccbin g++ -m64 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_87,code=sm_87 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_90,code=compute_90 -o fp16_dev.o -c fp16_dev.cu [@] g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -o fp16_emu.o -c fp16_emu.cpp [@] g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -o mnistCUDNN.o -c mnistCUDNN.cpp [@] /usr/local/cuda/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_87,code=sm_87 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_90,code=compute_90 -o mnistCUDNN fp16_dev.o fp16_emu.o mnistCUDNN.o -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib64 -lcublasLt -LFreeImage/lib/linux/x86_64 -LFreeImage/lib/linux -lcudart -lcublas -lcudnn -lfreeimage -lstdc++ -lm bash: ./mnistCUDNN: 没有那个文件或目录
最新发布
05-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值