解高次同余方程的应用

poj 3243

Clever Y
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 6862 Accepted: 1677

Description

Little Y finds there is a very interesting formula in mathematics:

XY mod Z = K

Given XYZ, we all know how to figure out K fast. However, given XZK, could you figure out Y fast?


Input

Input data consists of no more than 20 test cases. For each test case, there would be only one line containing 3 integers  XZK (0 ≤  XZK ≤ 10 9). 
Input file ends with 3 zeros separated by spaces. 

Output

For each test case output one line. Write "No Solution" (without quotes) if you cannot find a feasible  Y (0 ≤  Y <  Z). Otherwise output the minimum  Y you find.

Sample Input

5 58 33
2 4 3
0 0 0

Sample Output

9
No Solution

基本的模板题

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 65535
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int Read()
{
    char ch;
    int a = 0;
    while((ch = getchar()) == ' ' | ch == '\n');
    a += ch - '0';
    while((ch = getchar()) != ' ' && ch != '\n')
    {
        a *= 10;
        a += ch - '0';
    }
    return a;
}

void Print(int a)    //输出外挂
{
     if(a>9)
         Print(a/10);
     putchar(a%10+'0');
}

struct hash
{
    int a,b,next;
}Hash[MAXN*2];
int flag[MAXN+66];
int top,index;
void ins(int a,int b)
{
    int k=b&MAXN;
    if(flag[k]!=index)
    {
        flag[k]=index;
        Hash[k].next=-1;
        Hash[k].a=a;
        Hash[k].b=b;
        return;
    }
    while(Hash[k].next!=-1)
    {
        if(Hash[k].b==b)
            return;
        k=Hash[k].next;
    }
    Hash[k].next=++top;
    Hash[top].next=-1;
    Hash[top].a=a;
    Hash[top].b=b;
}
int find(int b)
{
    int k=b&MAXN;
    if(flag[k]!=index) return -1;
    while(k!=-1)
    {
        if(Hash[k].b==b)
            return Hash[k].a;
        k=Hash[k].next;
    }
    return -1;
}
int gcd(int a,int b)
{
    if(b==0)  return a;
    return gcd(b,a%b);
}
int Exgcd(int a,int b,int &x,int &y)
{
    int t,ret;
    if(!b)
    {
        x=1; y=0; return a;
    }
    ret=Exgcd(b,a%b,x,y);
    t=x; x=y; y=t-a/b*y;
    return ret;
}
int Inval(int a,int b,int n)
{
    int x,y,e;
    Exgcd(a,n,x,y);
    e=(ll)x*b%n;
    return e<0?e+n:e;
}
int pow_mod(ll a,int b,int c)
{
    ll ret=1%c; a%=c;
    while(b)
    {
        if(b&1)
            ret=ret*a%c;
        a=a*a%c;
        b>>=1;
    }
    return ret;
}
int BabyStep(int A,int B,int C)
{
    top=MAXN; ++index;
    ll buf=1%C,D=buf,K;
    int i,d=0,tmp;
    for(i=0;i<=100;buf=buf*A%C,++i)
        if(buf==B)
            return i;
    while((tmp=gcd(A,C))!=1)
    {
        if(B%tmp)  return -1;
        ++d;
        C/=tmp;
        B/=tmp;
        D=D*A/tmp%C;
    }
    int M=(int)ceil(sqrt((double)C));
    for(buf=1%C,i=0;i<=M;buf=buf*A%C,++i)
        ins(i,buf);
    for(i=0,K=pow_mod((ll)A,M,C);i<=M;D=D*K%C,++i)
    {
        tmp=Inval((int)D,B,C);
        int w;
        if(tmp>=0&&(w=find(tmp))!=-1)
            return i*M+w+d;
    }
    return -1;
}

int main()
{
    //fread;
    int A,B,C;
    while(scanf("%d%d%d",&A,&C,&B)!=EOF)
    {
        if((A+B+C)==0)  break;
        B%=C;
        int res=BabyStep(A,B,C);
        if(res<0) puts("No Solution");
        else printf("%d\n",res);
    }
    return 0;
}

poj 2417

Discrete Logging
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 4027 Accepted: 1856

Description

Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that 
    BL == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states 
   B(P-1) == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m 
   B(-m) == B(P-1-m) (mod P) .

Source


这题跟上题差不多。。

//#include <cstdio>
//#include <iostream>
//#include <cstring>
//#include <cmath>
//#include <algorithm>
//#include <string.h>
//#include <string>
//#include <vector>
//#include <queue>
//
//#define MEM(a,x) memset(a,x,sizeof a)
//#define eps 1e-8
//#define MOD 10009
//#define MAXN 65535
//#define MAXM 100010
//#define INF 99999999
//#define ll long long
//#define bug cout<<"here"<<endl
//#define fread freopen("ceshi.txt","r",stdin)
//#define fwrite freopen("out.txt","w",stdout)
//
//using namespace std;
//
//ll Read()
//{
//    char ch;
//    ll a = 0;
//    while((ch = getchar()) == ' ' | ch == '\n');
//    a += ch - '0';
//    while((ch = getchar()) != ' ' && ch != '\n')
//    {
//        a *= 10;
//        a += ch - '0';
//    }
//    return a;
//}
//
//void Prll(ll a)    //输出外挂
//{
//     if(a>9)
//         Prll(a/10);
//     putchar(a%10+'0');
//}
//
//struct hash
//{
//    ll a,b,next;
//}Hash[MAXN*2];
//ll flag[MAXN+66];
//ll top,index;
//void ins(ll a,ll b)
//{
//    ll k=b&MAXN;
//    if(flag[k]!=index)
//    {
//        flag[k]=index;
//        Hash[k].next=-1;
//        Hash[k].a=a;
//        Hash[k].b=b;
//        return;
//    }
//    while(Hash[k].next!=-1)
//    {
//        if(Hash[k].b==b)
//            return;
//        k=Hash[k].next;
//    }
//    Hash[k].next=++top;
//    Hash[top].next=-1;
//    Hash[top].a=a;
//    Hash[top].b=b;
//}
//ll find(ll b)
//{
//    ll k=b&MAXN;
//    if(flag[k]!=index) return -1;
//    while(k!=-1)
//    {
//        if(Hash[k].b==b)
//            return Hash[k].a;
//        k=Hash[k].next;
//    }
//    return -1;
//}
//ll gcd(ll a,ll b)
//{
//    if(b==0)  return a;
//    return gcd(b,a%b);
//}
//ll Exgcd(ll a,ll b,ll &x,ll &y)
//{
//    ll t,ret;
//    if(!b)
//    {
//        x=1; y=0; return a;
//    }
//    ret=Exgcd(b,a%b,x,y);
//    t=x; x=y; y=t-a/b*y;
//    return ret;
//}
//ll Inval(ll a,ll b,ll n)
//{
//    ll x,y,e;
//    Exgcd(a,n,x,y);
//    e=(ll)x*b%n;
//    return e<0?e+n:e;
//}
//ll pow_mod(ll a,ll b,ll c)
//{
//    ll ret=1%c; a%=c;
//    while(b)
//    {
//        if(b&1)
//            ret=ret*a%c;
//        a=a*a%c;
//        b>>=1;
//    }
//    return ret;
//}
//ll BabyStep(ll A,ll B,ll C)
//{
//    top=MAXN; ++index;
//    ll buf=1%C,D=buf,K;
//    ll i,d=0,tmp;
//    for(i=0;i<=100;buf=buf*A%C,++i)
//        if(buf==B)
//            return i;
//    while((tmp=gcd(A,C))!=1)
//    {
//        if(B%tmp)  return -1;
//        ++d;
//        C/=tmp;
//        B/=tmp;
//        D=D*A/tmp%C;
//    }
//    ll M=(ll)ceil(sqrt((double)C));
//    for(buf=1%C,i=0;i<=M;buf=buf*A%C,++i)
//        ins(i,buf);
//    for(i=0,K=pow_mod((ll)A,M,C);i<=M;D=D*K%C,++i)
//    {
//        tmp=Inval((ll)D,B,C);
//        ll w;
//        if(tmp>=0&&(w=find(tmp))!=-1)
//            return i*M+w+d;
//    }
//    return -1;
//}
//
//int main()
//{
////    fread;
//    ll A,B,C;
//    while(scanf("%lld%lld%lld",&C,&A,&B)!=EOF)
//    {
//        B%=C;
//        ll res=BabyStep(A,B,C);
//        if(res<0) puts("no solution");
//        else printf("%lld\n",res);
//    }
//    return 0;
//}
//


#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 65535
#define MAXM 100010
#define INF 99999999
#define ll long long
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int Read()
{
    char ch;
    int a = 0;
    while((ch = getchar()) == ' ' | ch == '\n');
    a += ch - '0';
    while((ch = getchar()) != ' ' && ch != '\n')
    {
        a *= 10;
        a += ch - '0';
    }
    return a;
}

void Print(int a)    //输出外挂
{
     if(a>9)
         Print(a/10);
     putchar(a%10+'0');
}

struct hash
{
    int a,b,next;
}Hash[MAXN*2];
int flag[MAXN+66];
int top,index;
void ins(int a,int b)
{
    int k=b&MAXN;
    if(flag[k]!=index)
    {
        flag[k]=index;
        Hash[k].next=-1;
        Hash[k].a=a;
        Hash[k].b=b;
        return;
    }
    while(Hash[k].next!=-1)
    {
        if(Hash[k].b==b)
            return;
        k=Hash[k].next;
    }
    Hash[k].next=++top;
    Hash[top].next=-1;
    Hash[top].a=a;
    Hash[top].b=b;
}
int find(int b)
{
    int k=b&MAXN;
    if(flag[k]!=index) return -1;
    while(k!=-1)
    {
        if(Hash[k].b==b)
            return Hash[k].a;
        k=Hash[k].next;
    }
    return -1;
}
int gcd(int a,int b)
{
    if(b==0)  return a;
    return gcd(b,a%b);
}
int Exgcd(int a,int b,int &x,int &y)
{
    int t,ret;
    if(!b)
    {
        x=1; y=0; return a;
    }
    ret=Exgcd(b,a%b,x,y);
    t=x; x=y; y=t-a/b*y;
    return ret;
}
int Inval(int a,int b,int n)
{
    int x,y,e;
    Exgcd(a,n,x,y);
    e=(ll)x*b%n;
    return e<0?e+n:e;
}
int pow_mod(ll a,int b,int c)
{
    ll ret=1%c; a%=c;
    while(b)
    {
        if(b&1)
            ret=ret*a%c;
        a=a*a%c;
        b>>=1;
    }
    return ret;
}
int BabyStep(int A,int B,int C)
{
    top=MAXN; ++index;
    ll buf=1%C,D=buf,K;
    int i,d=0,tmp;
    for(i=0;i<=100;buf=buf*A%C,++i)
        if(buf==B)
            return i;
    while((tmp=gcd(A,C))!=1)
    {
        if(B%tmp)  return -1;
        ++d;
        C/=tmp;
        B/=tmp;
        D=D*A/tmp%C;
    }
    int M=(int)ceil(sqrt((double)C));
    for(buf=1%C,i=0;i<=M;buf=buf*A%C,++i)
        ins(i,buf);
    for(i=0,K=pow_mod((ll)A,M,C);i<=M;D=D*K%C,++i)
    {
        tmp=Inval((int)D,B,C);
        int w;
        if(tmp>=0&&(w=find(tmp))!=-1)
            return i*M+w+d;
    }
    return -1;
}

int main()
{
//    fread;
    int A,B,C;
    while(scanf("%d%d%d",&C,&A,&B)!=EOF)
    {
        B%=C;
        int res=BabyStep(A,B,C);
        if(res<0) puts("no solution");
        else printf("%d\n",res);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值