A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 26133 | Accepted: 8923 |
Description

The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes
how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves
followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
题意是国际象棋中的马按照图示方法走,对给定大小的棋盘,判断能否走完棋盘,若能输出走的路径,不能输出possible
用DFS做,依次检查每个点,判断最终步数step是否等于棋盘大小p*q;
用dir[][]二维数组来表示马的下一步走向,简化了操作。
代码如下:
<pre code_snippet_id="288901" snippet_file_name="blog_20140412_7_9349528" name="code" class="cpp">#include<stdio.h> #define max 27 int p,q,sign,step; int map[max][max];//用map数组的值判断某个点是否遍历过 int sx[max],sy[max];//用这两个数组记录某点的坐标 int dir[8][2]={{-2,-1},{-2,1},{-1,-2},{-1,2},{1,-2},{1,2},{2,-1},{2,1}};//二维数组用于移动表示 void dfs(int i,int j); int main(void) { int t,j,i,n; scanf("%d",&n); t=1; while(n--) { sign=0;//用sign标志判断是否完成所有遍历 step=0;//记录当前遍历点的个数 scanf("%d%d",&p,&q); for(i=1;i<=p;i++) { for(j=1;j<=q;j++) map[i][j]=0;//将所有点置为未遍历状态 } dfs(1,1); printf("Scenario #%d:\n",t++); if(sign) { for(i=1;i<=p*q;i++) printf("%c%d",sy[i]+64,sx[i]); printf("\n"); } else printf("impossible\n"); if(n) printf("\n"); } return 0; } void dfs(int i,int j) { int k,x,y; if(sign) return ; step++; sx[step]=i; sy[step]=j; if(step==p*q) { sign=1; return; } map[i][j]=1; for(k=0;k<8;k++) { x=i+dir[k][1]; y=j+dir[k][0];//重新记录当前点的坐标 if(map[x][y]==0 && x>0 && x<=p && y>0 && y<=q) { dfs(x,y);//判断当前点为未遍历点,从这点开始dfs step--;//退出当前对该分支的遍历 } } map[i][j]=0; }