堆排序算法详解

一、堆排序算法原理和动态图解

       将待排序的序列构造成一个大顶堆。此时,整个序列的最大值就是堆顶的根节点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次最大值。如此反复执行,就能得到一个有序序列了。这个过程其实就是先构建一个最大/最小二叉堆,然后不停的取出最大/最小元素(头结点),插入到新的队列中,以此达到排序的目的。如下图所示:

Sorting heapsort anim.gif

二、二叉树定义

        要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树二叉堆。二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)。树和二叉树的三个主要差别:

  • 树的结点个数至少为 1,而二叉树的结点个数可以为 0
  • 树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
  • 树的结点无左、右之分,而二叉树的结点有左、右之分
  1. 满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树,即每一层上的节点数都是最大节点数。如下图b所示:深度为3的满二叉树。
  2. 完全二叉树:而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树完全二叉树(Complete Binary Tree)。如下图a所示:是一个深度为4的完全二叉树。

FullBT CompleteBT.jpg

三、堆的定义

       堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

       对于7在数组存放的position=2,而它的子元素6的position=5=2*2[也就是父元素存放的位置]+1、子元素4的position=6=2*2[也就是父元素存放的位置]+2;同样对于11在在数组存放的position=0,而它的子元素10的position=1=2*0[也就是父元素存放的位置]+1、子元素7的position=2=2*0[也就是父元素存放的位置]+2;所以

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抽离的心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值