原坐标
[
u
,
v
]
[u, v]
[u,v]
(
x
y
z
)
=
(
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
)
(
u
v
1
)
\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}\begin{pmatrix} u\\ v\\ 1 \end{pmatrix}
⎝⎛xyz⎠⎞=⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞⎝⎛uv1⎠⎞
x
=
a
11
u
+
a
12
u
+
a
13
u
y
=
a
21
u
+
a
22
u
+
a
23
u
z
=
a
31
u
+
a
32
u
+
a
33
u
\\ x = a_{11}u + a_{12}u + a_{13}u \\ y = a_{21}u + a_{22}u + a_{23}u \\ z = a_{31}u + a_{32}u + a_{33}u \\
x=a11u+a12u+a13uy=a21u+a22u+a23uz=a31u+a32u+a33u
变换后的坐标
x
′
=
x
z
=
a
11
u
+
a
12
u
+
a
13
u
a
31
u
+
a
32
u
+
a
33
u
y
′
=
y
z
=
a
21
u
+
a
22
u
+
a
23
u
a
31
u
+
a
32
u
+
a
33
u
\\ {x}' = \frac{x}{z} = \frac{a_{11}u + a_{12}u + a_{13}u}{a_{31}u + a_{32}u + a_{33}u} \\ \\ {y}' = \frac{y}{z} = \frac{a_{21}u + a_{22}u + a_{23}u}{a_{31}u + a_{32}u + a_{33}u}
x′=zx=a31u+a32u+a33ua11u+a12u+a13uy′=zy=a31u+a32u+a33ua21u+a22u+a23u
透视变换
最新推荐文章于 2023-04-06 18:59:08 发布