单调递增最长子序列 O(nlogn)

本文介绍了一种求解最长递增子序列问题的高效算法,通过改进传统的动态规划方法,利用二分查找实现O(nlogn)的时间复杂度。文章详细解释了算法原理,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单调递增最长子序列

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 4
描述
求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4
输入
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出
输出字符串的最长递增子序列的长度
样例输入
3
aaa
ababc
abklmncdefg
样例输出
1
3
7
来源
经典题目
上传者
iphxer

这一题的数据规模最大可以达到10000,经典的O(n^2)的动态规划算法明显会超时。我们需要寻找更好的方法来解决最长上升子序列问题。

  先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。

  现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足

   (1)x < y < i (2)A[x] < A[y] < A[i] (3)F[x] = F[y]

  此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?

  很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。

  再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)。

  注意到D[]的两个特点:

  (1) D[k]的值是在整个计算过程中是单调不上升的。
  (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

  利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D[len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。

  在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

  这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
int D[10000];
int binarysearch(int low,int high,int m)//二分查找
{
	int mid;
	mid=(low+high)/2;
	while(low<=high)
	{
		if(D[mid]<m&&D[mid+1]>=m)
			return mid;
		else
			if(D[mid]<m)
				low=mid+1;
			else
				high=mid-1;
		mid=(low+high)/2;
	} 
	return mid;
}   
int main()
{
	char a[10000];
	int kase,n,i,j,k,len;
	cin>>kase;
	while(kase--)
	{
		cin>>a+1;
		D[1]=a[1];
		len=1;
		n=strlen(a+1);
		for(i=2;i<=n;i++)
		{
			if(a[i]>D[len])
			{
				len++;
				D[len]=a[i];
			}
			else
			{
				j=binarysearch(1,len,a[i]);
				k=j+1;
				D[k]=a[i];
			} 
		}  
	cout<<len<<endl;  
}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值