整数的划分—动态规划



       整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。所谓整数划分,是指把一个正整数n写成如下形式:

       n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

       如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

       例如但n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

       注意4=1+3 和 4=3+1被认为是同一个划分。

       该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;

       根据n和m的关系,考虑以下几种情况: 

       (1)当 n = 1 时,不论m的值为多少(m > 0 ),只有一种划分即 { 1 };

        (2)  当 m = 1 时,不论n的值为多少,只有一种划分即 n 个 1,{ 1, 1, 1, ..., 1 };

        (3)  当 n = m 时,根据划分中是否包含 n,可以分为两种情况:

              (a). 划分中包含n的情况,只有一个即 { n };

              (b). 划分中不包含n的情况,这时划分中最大的数字也一定比 n 小,即 n 的所有 ( n - 1 ) 划分。

              因此 f(n, n) = 1 + f(n, n-1);

        (4) 当 n < m 时,由于划分中不可能出现负数,因此就相当于 f(n, n);

        (5) 但 n > m 时,根据划分中是否包含最大值 m,可以分为两种情况:

               (a). 划分中包含 m 的情况,即 { m, { x1, x2, ..., xi } }, 其中 { x1, x2, ..., xi } 的和为 n - m,可能再次出现 m,因此是(n - m)的 m 划分,因此这种划分

                     个数为 f(n-m, m);

               (b). 划分中不包含 m 的情况,则划分中所有值都比 m 小,即 n 的 ( m - 1 ) 划分,个数为 f(n, m - 1);

              因此 f(n, m) = f(n - m, m) + f(n, m - 1);

 

         综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

         f(n, m) =      1;                                        ( n = 1 or m = 1 )

                            f(n, n);                                 ( n < m )

                            1+ f(n, m - 1);                      ( n = m )

                            f(n - m, m) + f(n, m - 1);       ( n > m )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值