poj2184 Cow Exhibition(带负数的背包问题)(关于背包问题的精髓可以去百度背包九讲)

本文介绍了一个关于选择一组具有特定智能和乐趣值的牛参加展览的问题。目标是在确保总智能值和总乐趣值均非负的前提下,最大化这两个值的总和。文章通过分析问题背景和要求,提出了一种基于背包问题的解决方案,利用动态规划方法实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cow Exhibition
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7634 Accepted: 2775

Description

"Fat and docile, big and dumb, they look so stupid, they aren't much 
fun..." 
- Cows with Guns by Dana Lyons 

The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow. 

Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative. 

Input

* Line 1: A single integer N, the number of cows 

* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow. 

Output

* Line 1: One integer: the optimal sum of TS and TF such that both TS and TF are non-negative. If no subset of the cows has non-negative TS and non- negative TF, print 0. 

Sample Input

5
-5 7
8 -6
6 -3
2 1
-8 -5

Sample Output

8

Hint

OUTPUT DETAILS: 

Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF 
= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value 
of TS+TF to 10, but the new value of TF would be negative, so it is not 
allowed. 
要两边的和都大于零,并且求出最大值,其实就是背包问题,只不过带了负数,取100000处为原点就可
Memory: 1488 KB Time: 141 MS Language: G++ Result: Accepted
#include<stdio.h>

int c[1050],w[1050],f[201000];
#define A 1000000000
int main()
{
	int i,j,k,n,v,m,x,max;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=0;i<=200000;i++)
		{
			f[i]=-A;
		}//printf("%d ",w[0]);
		for(i=0;i<n;i++)
		{
			scanf("%d%d",c+i,w+i);
		}//printf("%d ",w[0]);
		
		f[100000]=0;
		for (i = 0; i < n; ++i)
		{
			if(c[i]<0&&w[i]<0)
				continue;
			if(c[i]>0)
			for (v = 200000; v >=c[i]; --v)//c[i]可优化为bound,bound = max {V - sum c[i,...n],c[i]}//正数的是从后往前的
			{
				if(f[v-c[i]]>-A)
				if(f[v] < f[v - c[i]] + w[i])
				{
					f[v] =f[v - c[i]] + w[i];
				}
			}
			else for (v = c[i];v<=200000+c[i]; v++)//注意啦,负数的递推方程是从前往后的,为的是避免重复加上一个状态
			{
				if(f[v-c[i]]>-A)
				if(f[v] < f[v - c[i]] + w[i])
				{
					f[v] =f[v - c[i]] + w[i];
				}
			}
			
		}
		max=-A;
		for(i=100000;i<=200000;i++)
		{
			if(f[i]>=0)
			{
				//printf("giuie");
				x=f[i]+i-100000;
				if(max<x)
					max=x;
			}
		}
		if(max!=-A)
			printf("%d\n",max);
		else printf("0\n");
	}
	return 0;
}

下面再贴一份学长写的16ms的程序,比我的快十倍啊

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF (1<<30)
#define PI acos(-1.0)
#define ll __int64
using namespace std;

int dp[210000]; //dp[i]表示当s的和为i-100000时,t的最大值
#define add 100000

int main()
{
   int n;

   while(scanf("%d",&n)!=EOF)
   {
      int s,t;
      int Max=0,Min=0;

      for(int i=0;i<=200000;i++)
         dp[i]=-INF;

      dp[add]=0;
      for(int i=1;i<=n;i++)
      {
         scanf("%d%d",&s,&t);
         if(s>0)//问题可能就出在这,他没有保存数组,而是输入一组数据就计算一下,可能时间就差在输入那个环节了,整体来看用的还是背包的思想
         {
            for(int i=Max+add;i>=Min+add;i--)
               dp[i+s]=max(dp[i+s],dp[i]+t);
            Max+=s;
         }
         else
         {
            for(int i=Min+add;i<=Max+add;i++)
               dp[i+s]=max(dp[i+s],dp[i]+t);
            Min+=s;
         }
      }
      int ans=0;

      for(int i=add;i<=Max+add;i++)
      {
         if(dp[i]>=0)
            ans=max(ans,i-add+dp[i]);
      }
      printf("%d\n",ans);


   }
   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LittleLoveBoy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值