Description
Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
Input
The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.
Output
For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
Sample Input
1 2 3 1 2 3 2 2 3
Sample Output
3 3 4
题意:从m个序列中每个选出一个,选出m个的和的最小的前n个
思路:跟UVA - 11997 K Smallest Sums 思路是一样的
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 2005;
struct node {
int s, b;
node(int _s, int _b) {
s = _s;
b = _b;
}
bool operator <(const node &a) const {
return s > a.s;
}
};
int n, m;
int A[maxn][maxn];
void merge(int a[], int b[], int c[]) {
priority_queue<node> q;
for (int i = 0; i < n; i++)
q.push(node(a[i]+b[0], 0));
for (int i = 0; i < n; i++) {
node cur = q.top();
q.pop();
c[i] = cur.s;
int cnt = cur.b;
if (cnt + 1 < n)
q.push(node(cur.s-b[cnt]+b[cnt+1], cnt+1));
}
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &m, &n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)
scanf("%d", &A[i][j]);
sort(A[i], A[i]+n);
}
for (int i = 1; i < m; i++)
merge(A[0], A[i], A[0]);
printf("%d", A[0][0]);
for (int i = 1; i < n; i++)
printf(" %d", A[0][i]);
printf("\n");
}
return 0;
}