JVM垃圾收集器

本文详细介绍了Java中各种垃圾收集器的工作原理,包括Serial、ParNew、ParallelScavenge、SerialOld、ParallelOld、CMS和G1。涵盖了单线程与多线程收集器的区别,以及它们在不同应用场景下的优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新生代垃圾收集器

Serial

此垃圾收集器年代久远,用于新生代的垃圾收集,采用复制算法。是单线程的垃圾收集器也就是不管你的服务器有多少CPU,反正它就用其中的一个CPU启动一个线程去处理垃圾回收,并且停止所有工作线程等待它回收完成。所以它在收集时会STW(stop the world)。能与其搭配的老年代收集器是CMS与Serial Old。

 

面试官:谈谈你对JVM垃圾收集器的了解

Serial与Serial Old搭配

单线程的好处就在于它简单,没有上下文线程切换的开销。多用于桌面应用中,也就是适用于client模式。因为桌面应用一般占用的内存不大,内存不大代表需要处理的垃圾不多,所以即使单线程也能处理很快,所以感受不到STW。是client模式下默认的新生代垃圾收集器。

ParNew

此垃圾收集器可以说是Serial的多线程版本,它和Serial的差别就在于复制的时候是多线程的。

 

面试官:谈谈你对JVM垃圾收集器的了解

ParNew与Serial Old搭配

它主要是能利用多CPU,提升复制的速度,减少STW的时间。但是在单CPU情况下不要使用它,因为线程切换有开销,性能不一定会比Serial好,当然如果CPU数很多的话那性能肯定是比Serial好的。所以在Server模式下可以用它来作为新生代垃圾处理器。能与其搭配的老年代收集器是CMS与Serial Old。

Parallel Scavenge

Scavenge是捡破烂的意思...恩并行捡破烂说的是好像没错,用的也是复制算法。那不是已经在ParNew了吗,怎么还来个并行的。它和ParNew主要有两个不同点

1、Parallel Scavenge的关注点在于可控制的吞吐量,吞吐量=运行用户代码的时间/(运行用户代码的时间+GC时间)。就是说它的重点不在于想缩短每次GC的时间,而在于控制虚拟机运行一段时间中,所花费在GC上的总时间。比如程序运行了100分钟,其间垃圾收集了1分钟,那吞吐量就是99%。

2、Parallel Scavenge能自适应调节新生代中配置的参数,例如Eden和survivor比例等。其实就是因为它能自适应,所以才能可控制吞吐量,它根据实际情况动态调整这些参数来达到要求的吞吐量。

此收集器也提供了“-XX:MaxGCPauseMillis”控制垃圾收集最大停顿时间(允许值大于0),“-XX:GCTimeRatio”吞吐量(1-99)。

看到“-XX:MaxGCPauseMillis”,别以为我们想设置多少就多少,收集器只能尽可能的保证而已。而且说白了能如果想提高新生代GC的速度,那就是减少新生代的内存空间,内存空间少垃圾肯定少处理起来肯定快。但是空间少是不是更快的容易满啊,所以所需的GC次数肯定会增多,那吞吐量也会下降。

比如说一个程序现在跑在服务器上,假设每次新生代GC时间是100毫秒,每10秒钟一次新生代GC,那一分钟花费在GC上的时间就是600毫秒。那我想每次花在GC时间更少比如60毫秒,那就减少新生代内存空间,但是这样每5秒钟一次GC,那一分钟花费在GC上的时间就是720毫秒。

对应使用的场景就是如果你的服务是计算类的,默默在后台计算,和用户交互很少,所以你肯定想的是吞吐量大,也就是总的GC时间短,能充分的用了CPU来计算,这个时候就适合用Parallel Scavenge。

那如果你的程序是交互类的,你的要求肯定就是STW的时间越短越好,能快速响应客户的请求。Parallel Scavenge也行,但是它不能和CMS联合使用呀!因为Parallel Scavenge没有使用原本HotSpot中和其它GC通用的那个GC框架,而是新框架。所以默认和CMS搭配的就是ParNew。

 

面试官:谈谈你对JVM垃圾收集器的了解

Parallel Scavenge与Parallel Old搭配

 

老年代垃圾收集器

Serial Old

它是Serial 收集器的老年代版本,是单线程收集,采用的是标记-整理算法。主要用于client模式和CMS的后备收集器。除了G1,上面说的几个新生代收集器都可以与它搭配使用。图请参考上面Serial。

Paraller Old

它是Parallel Scavenge的老年代版本,是多线程收集,采用的是标记-整理算法。它只能和Parallel Scavenge搭配。它的出现打破了Parallel Scavenge尴尬的地位,因为之前Parallel Scavenge只能和Serial Old配合,人家新生代都多线程跑了,奈何老年代只有单线程,拖累它了。图请参考上面Parallel Scavenge。

CMS

CMS(Concurrent Mark Sweep),从名字可以看出它采用的是标记-清除算法。它致力于减少STW的时间,让垃圾收集时同时用户线程也能并行着。在目前的Server主流垃圾收集器。

 

面试官:谈谈你对JVM垃圾收集器的了解

CMS

它的垃圾收集步骤分为以下4步:

1、初始标记(会STW)

2、并发标记

3、重新标记(会STW)

4、并发清理

初始标记就是仅标记GC Roots直接关联的对象,不继续深入标记,致力于减少STW时间。并发标记就是深入标记遍历后面所有关联对象。重新标记就是修正因并发标记阶段而发生变动了的对象标记会STW。然后就是并发清理垃圾。

所以CMS把所需消耗时间最长的深入标记阶段和清理阶段与用户线程并行。大大减少了STW所需的时间。

但是它有以下3个缺点:

1、并发阶段会与工作线程争抢CPU资源

2、空间碎片问题,因为采取的是标记-清除算法所以会产生空间碎片。为什么解决这个问题CMS提供了"-XX:+UseCMSCompactAtFullCollection"(默认开启),用于当CMS顶不住需要进行FullGC时整理空间碎片,但是整理的过程是用户线程是得停止工作的,所以停顿的时间会变长。

3、浮动垃圾问题。因为在并发清理的时候允许用户线程继续执行,而执行就可能产生新的垃圾进入老年代,所以需要预留一部分空间给这些浮动垃圾,而当这些浮动垃圾过多在CMS运行期间爆了,那CMS就会出现“Concurrent Mode Failure”,这是时候就得后备的Serial Old上来重新进行老年代的垃圾收集,所以停顿的时间就更长了。

G1

此垃圾收集器不需要和别人配合,自己处理新生代和老年代。在jdk9中G1变为Server模式默认的垃圾收集器。它的发明就是为了替代CMS。

G1(Garbage-First)从整体来看是基于标记-整理的算法,从局部来看是基于复制算法。它和CMS一样可以和用户进程并行。相对于CMS 它的优点是首先它能建立可预测的停顿时间模型,能在一个规定的时间段内指定垃圾收集的时间不超过限制的毫秒数,并且它将Java堆分为多个大小相等的独立区域,也就是Region。虽然它还保留着分代的概念,但是新生代和老年代不是物理隔离了。它的清理区间不再是整个新生代或者老年代,而是以区域为划分,不会产生空间碎片

G1会维护一个优先列表,根据跟踪各个region回收所能产生的空间大小和时间来标定优先级,优先回收优先级最大的Region。这就等于每次的回收目标更加精确化,提高回收的效率

G1的收集步骤可分为:

1、初始标记

2、并发标记

3、最终标记

4、筛选回收

 

面试官:谈谈你对JVM垃圾收集器的了解

G1

初始标记和CMS一样先标记GC Roots直接关联对象,然后并发深入标记,遍历关联对象。最终标记和CMS重新标记一个概念,筛选回收也就是筛选下决定回收哪个Region价值更大。

### JVM垃圾收集器的工作原理 JVM中的垃圾收集器负责自动管理和释放不再使用的内存资源。这一过程对于维护Java应用程序的性能至关重要[^1]。垃圾收集的主要目标是在不影响应用正常运行的前提下尽可能高效地回收无用对象所占有的空间。 #### 垃圾收集器类型及其特性 多种类型的垃圾收集器存在于现代版本的JVM中,每种都有各自的设计理念来适应特定应用场景下的需求: - **Serial GC**:适用于单核处理器的小规模应用环境,在年轻代采用复制算法,在老年代则使用标记-整理算法。 - **Parallel GC (也称为Throughput Collector)**:专为多CPU系统设计,旨在最大化吞吐量,即完成更多有用工作的比例相对于总执行时间而言。该收集器同样区分新生代与年老代,并分别运用不同的清理策略以达到最佳效果。 - **CMS (Concurrent Mark-Sweep) GC**:专注于降低暂停时间而非整体效率,适合于那些对响应速度敏感的服务端程序。它可以在后台逐步扫描存活对象并清除死亡对象而不必完全停止整个应用程序进程。 - **G1 (Garbage First) GC**:自JDK 7更新版引入以来成为默认选项之一,特别擅长处理具有大量活跃数据的大容量堆配置。G1将整个堆划分为多个固定大小的区域(region),并通过预测哪些地区最有可能包含可回收的空间来进行优先级排序。 - **ZGC 和 Shenandoah GC**:这两种新型低延迟垃圾收集器是从JDK 11开始加入的支持超大型堆(可达数TB级别)的同时具备亚毫秒级别的短暂停滞特性的工具[ZGC][^5]。它们都采用了先进的并发技术使得大部分垃圾回收活动能够在不停止用户线程的情况下发生。 ### 如何选择合适的垃圾收集器? 选择最适合项目需求的垃圾收集器取决于具体的应用场景以及期望达成的目标。如果追求最高的吞吐率,则可能倾向于使用`Parallel GC`; 若更看重快速反应时间和较低的停顿频率,那么像`CMS`, `G1`, 或者最新的`ZGC/Shenandoah`可能是更好的选择。值得注意的是,“最优”的方案并非永恒不变——随着业务逻辑的发展和技术进步,原先选定的最佳实践可能会变得不合适,因此定期审查当前设置总是明智之举[^2]。 ### 性能调优建议 为了使选中的垃圾收集器发挥最大效能,可以通过调整一系列参数来进行精细化控制。这包括但不限于设定初始/最大堆尺寸(-Xms/-Xmx), 新生代占比(-XX:NewRatio), 生存阈值(-XX:+UseAdaptiveSizePolicy,-XX:MaxTenuringThreshold)等。此外,启用详细的日志记录功能可以帮助诊断潜在瓶颈所在之处,从而指导后续改进措施的方向。最终目的是找到一个平衡点,在满足服务等级协议(SLA)关于响应时间和吞吐量的要求之间取得良好折衷。 ```bash java -Xms512m -Xmx4g -XX:+UseG1GC MyApplication ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值