HDU 2686 Matrix 3376 Matrix Again(费用流)

本文探讨了矩阵路径优化问题,通过拆点、建图并应用费用流算法解决从矩阵左上角到右下角及反之的路径选择问题。重点介绍了如何在不同数据范围内优化算法性能,并详细阐述了解决方案的实现过程。

HDU 2686 Matrix

题目链接

3376 Matrix Again

题目链接

题意:这两题是一样的,只是数据范围不一样,都是一个矩阵,从左上角走到右下角在从右下角走到左上角能得到最大价值

思路:拆点,建图,然后跑费用流即可,不过HDU3376这题,极限情况是300W条边,然后卡时间过了2333

代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

const int MAXNODE = 600 * 600 * 2 + 5;
const int MAXEDGE = 4 * MAXNODE;
typedef int Type;
const Type INF = 0x3f3f3f3f;

struct Edge {
	int u, v;
	Type cap, flow, cost;
	Edge() {}
	Edge(int u, int v, Type cap, Type flow, Type cost) {
		this->u = u;
		this->v = v;
		this->cap = cap;
		this->flow = flow;
		this->cost = cost;
	}
};

struct MCFC {
	int n, m, s, t;
	Edge edges[MAXEDGE];
	int first[MAXNODE];
	int next[MAXEDGE];
	int inq[MAXNODE];
	Type d[MAXNODE];
	int p[MAXNODE];
	Type a[MAXNODE];

	void init(int n) {
		this->n = n;
		memset(first, -1, sizeof(first));
		m = 0;
	}

	void add_Edge(int u, int v, Type cap, Type cost) {
		edges[m] = Edge(u, v, cap, 0, cost);
		next[m] = first[u];
		first[u] = m++;
		edges[m] = Edge(v, u, 0, 0, -cost);
		next[m] = first[v];
		first[v] = m++;
	}

	bool bellmanford(int s, int t, Type &flow, Type &cost) {

		for (int i = 0; i < n; i++) d[i] = INF;
		memset(inq, false, sizeof(inq));
		d[s] = 0; inq[s] = true; p[s] = s; a[s] = INF;
		queue<int> Q;
		Q.push(s);
		while (!Q.empty()) {
			int u = Q.front(); Q.pop();
			inq[u] = false;
			for (int i = first[u]; i != -1; i = next[i]) {
				Edge& e = edges[i];
				if (e.cap > e.flow && d[e.v] > d[u] + e.cost) {
					d[e.v] = d[u] + e.cost;
					p[e.v] = i;
					a[e.v] = min(a[u], e.cap - e.flow);
					if (!inq[e.v]) {Q.push(e.v); inq[e.v] = true;}
				}
			}
		}
		if (d[t] == INF) return false;
		flow += a[t];
		cost += d[t] * a[t];
		int u = t;
		while (u != s) {
			edges[p[u]].flow += a[t];
			edges[p[u]^1].flow -= a[t];
			u = edges[p[u]].u;
		}
		return true;
	}

	Type Mincost(int s, int t) {
		Type flow = 0, cost = 0;
		while (bellmanford(s, t, flow, cost));
		return cost;
	}
} gao;

const int N = 600 * 600 + 5;
const int d[2][2] = {1, 0, 0, 1};

int n, num[N];

int get(int now, int k) {
	int x = now / n;
	int y = now % n;
	x += d[k][0];
	y += d[k][1];
	if (x < 0 || x >= n || y < 0 || y >= n) return -1;
	return x * n + y;
}

int main() {
	while (~scanf("%d", &n)) {
		gao.init(n * n * 2);
		for (int i = 0; i < n * n; i++) {
			scanf("%d", &num[i]);
			if (i == 0) gao.add_Edge(i, i + n * n, 2, -num[i]);
			else if (i == n * n - 1) gao.add_Edge(i, i + n * n, 2, -num[i]);
			else gao.add_Edge(i, i + n * n, 1, -num[i]);
		}
		for (int i = 0; i < n * n; i++) {
			for (int j = 0; j < 2; j++) {
				int next = get(i, j);
				if (next < 0 || next >= n * n) continue;
				gao.add_Edge(i + n * n, next, 2, 0);
			}
		}
		printf("%d\n", -gao.Mincost(0, n * n * 2 - 1) - num[0] - num[n * n - 1]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值