Scikit-learn-04.决策树算法

文章介绍了决策树作为机器学习中的分类器,它是有监督学习的一种方法,依赖大量历史数据进行训练。通过建立类似流程图的树结构,根据特征测试进行分类。文中以学生考试成绩为例,展示了如何使用Python的scikit-learn库构建和应用决策树进行成绩评定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列文章介绍人工智能的基础概念和常用公式。由于协及内容所需的数学知识要求,建议初二以上同学学习。 运行本系统程序,请在电脑安装好Python、matplotlib和scikit-learn库。相关安装方法可自行在百度查找。

这节我们来说机器学习中常用的一个功能-决策树。决策树是分类器中的一种,属于有监督学习方法。简单来说,分类器就是根据样本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。因此他需要大量的历史数据。数据越多,运算结果就越接近正确值。

决策树是一个类似于流程图的树结构,分支节点表示对一个特征进行测试,根据测试结果进行分类,树叶节点代表一个类别。


示例说明

下面我们以考试成绩来进行一个分类例子。某班学生语、数、英三科考试成绩。每科都在80分以上的就算优秀。优秀用1表示。假设我并不知道优秀的标准计算方式,只有一堆学生成绩和评定结果。我如何根据这些数据推算出新学生的成绩评定呢?


示例程序

from sklearn import tree
#语数英三科成绩
data_set = [[80,90,70],[60,90,87],[98,85,97],[40,70,50],[89,90,87],[67,85,74],[87,82,80],[100,76,79]]
#三科成绩对应是澡优秀,1为优秀
labels = [0,0,1,0,1,0,1,0]
   
#生成决策树分类器
clf = tree.DecisionTreeClassifier()
#分类器训练数据
clf = clf.fit(data_set,labels)
    
#分类器预测新成绩数据
print(clf.predict([[80,45,76],[90,97,84]]))

 运行结果

[0,1]
#第一个成绩是0,第二个成绩是1,优秀。

 这里要注意一点,输入的样本数据一定要多。这样才能保证预测值的准确度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sun zi chao

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值