Codeforces Round #128 (Div. 2) B. Game on Paper

本文介绍了一道算法题目,任务是在一个n*n的方格纸上通过一系列操作寻找是否存在一个3x3的黑色方格。文章提供了完整的代码实现,采用暴力搜索的方法来找出满足条件的最小步数。
B. Game on Paper
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One not particularly beautiful evening Valera got very bored. To amuse himself a little bit, he found the following game.

He took a checkered white square piece of paper, consisting of n × n cells. After that, he started to paint the white cells black one after the other. In total he painted m different cells on the piece of paper. Since Valera was keen on everything square, he wondered, how many moves (i.e. times the boy paints a square black) he should make till a black square with side 3 can be found on the piece of paper. But Valera does not know the answer to this question, so he asks you to help him.

Your task is to find the minimum number of moves, till the checkered piece of paper has at least one black square with side of 3. Otherwise determine that such move does not exist.

Input

The first line contains two integers n and m (1 ≤ n ≤ 10001 ≤ m ≤ min(n·n, 105)) — the size of the squared piece of paper and the number of moves, correspondingly.

Then, m lines contain the description of the moves. The i-th line contains two integers xiyi (1 ≤ xi, yi ≤ n) — the number of row and column of the square that gets painted on the i-th move.

All numbers on the lines are separated by single spaces. It is guaranteed that all moves are different. The moves are numbered starting from 1 in the order, in which they are given in the input. The columns of the squared piece of paper are numbered starting from 1, from the left to the right. The rows of the squared piece of paper are numbered starting from 1, from top to bottom.

Output

On a single line print the answer to the problem — the minimum number of the move after which the piece of paper has a black square with side 3. If no such move exists, print -1.

Sample test(s)
input
4 11
1 1
1 2
1 3
2 2
2 3
1 4
2 4
3 4
3 2
3 3
4 1
output
10
input
4 12
1 1
1 2
1 3
2 2
2 3
1 4
2 4
3 4
3 2
4 2
4 1
3 1
output
-1

题意:输入n和m,n代表有一个n*n的方格,m代表步数,输入每步要走的方格数,求走过的位置能不能组成一个一个3*3的方格,若能,输出最少步数,若不能,输出-1.用暴力解决之。。。。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
   int is[1001][1001];

 int main()
 {
   int m,n,i,j;

   int a[100005],b[100005];
  while(~scanf("%d%d",&n,&m))
   {
      memset(is,0,sizeof(is));
       for(i=0;i<m;i++)
        {
       scanf("%d%d",&a[i],&b[i]);
        is[a[i]][b[i]]=i+1;
            }

        int flag=0;
        int max=1000000000,max1=100000000;


         for(i=1;i<=n;i++)
          for(j=1;j<=n;j++)
          if(is[i][j]!=0&&is[i-1][j]!=0&&is[i+1][j]!=0&&is[i][j-1]!=0&&is[i][j+1]!=0&&is[i-1][j-1]!=0&&is[i+1][j+1]!=0&&is[i-1][j+1]!=0&&is[i+1][j-1]!=0)
             {
                 flag=1;
             max=is[i][j];
             if(max<is[i-1][j]) max=is[i-1][j];
             if(max<is[i+1][j]) max=is[i+1][j];
             if(max<is[i][j-1]) max=is[i][j-1];
             if(max<is[i][j+1]) max=is[i][j+1];
             if(max<is[i-1][j-1]) max=is[i-1][j-1];
             if(max<is[i+1][j+1]) max=is[i+1][j+1];
             if(max<is[i-1][j+1]) max=is[i-1][j+1];
             if(max<is[i+1][j-1]) max=is[i+1][j-1];

               if(max1>max)
                 max1=max;
            }


      if(flag!=1)
       { printf("-1\n");continue;}

      printf("%d\n",max1);

         }
     return 0;
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值