1、问题
( 1 )路边玩法
有 n 堆石子堆放在路边,现要将石子有序地合并成一堆,规定每次只能移动相邻的两堆石子合并,合并花费为新合成的一堆石子的数量。求将这 N 堆石子合并成一堆的总花费(最小或最大)。
2、分析
( 1 )建立最优值递归式
设 Min [i][j] 代表从第 i 堆石子到第 j 堆石子合并的最小花费, Min [i][k] 代表从第 i 堆石子到第 k 堆石子合并的最小花费,Min[k+1][j] 代表从第 k+1 堆石子到第 j 堆石子合并的最小花费, w ( i , j )代表从 i 堆到 j 堆的石子数量之和。列出递归式:
Min [ i ][ j ] = 0 (i = j)
Min [ i ][ j ] = min ( Min [ i ][ k ] + Min [ k + 1][ j ] + w ( i , j )) , i < j( i ≤ k < j)
Max [i][j] 代表从第 i 堆石子到第 j 堆石子合并的最大花费,Max [i][k] 代表从第 i 堆
石子到第 k 堆石子合并的最大花费,Max [k+1][j] 代表从第 k+1 堆石子到第 j 堆石子合并的最大花费, w ( i , j )代表从 i 堆到 j 堆的石子数量之和。列出递归式: