动态规划之石子合并

这篇博客介绍了如何使用动态规划解决石子合并问题,通过建立最优值递归式,计算从第i堆到第j堆石子合并的最小和最大花费。详细阐述了初始化、循环计算过程以及代码实现,最后讨论了时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、问题

( 1 )路边玩法
有 n 堆石子堆放在路边,现要将石子有序地合并成一堆,规定每次只能移动相邻的两堆石子合并,合并花费为新合成的一堆石子的数量。求将这 N 堆石子合并成一堆的总花费(最小或最大)。

 

 

 

2、分析

( 1 )建立最优值递归式
设 Min [i][j] 代表从第 i 堆石子到第 j 堆石子合并的最小花费, Min [i][k] 代表从第 i 堆石子到第 k 堆石子合并的最小花费,Min[k+1][j] 代表从第 k+1 堆石子到第 j 堆石子合并的最小花费, w ( i , j )代表从 i 堆到 j 堆的石子数量之和。列出递归式:
Min [ i ][ j ] = 0 (i = j)
Min [ i ][ j ] = min ( Min [ i ][ k ] + Min [ k + 1][ j ] + w ( i , j )) , i < j( i ≤ k < j)

Max [i][j] 代表从第 i 堆石子到第 j 堆石子合并的最大花费,Max [i][k] 代表从第 i 堆
石子到第 k 堆石子合并的最大花费,Max [k+1][j] 代表从第 k+1 堆石子到第 j 堆石子合并的最大花费, w ( i , j )代表从 i 堆到 j 堆的石子数量之和。列出递归式:

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码莎拉蒂 .

你的鼓励是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值