题意:(1^1 + 2^2 + 3^3+……+N^N )%7
方法一:此题可找循环节以294为循环节点;
方法二:运用二分求等比数列&&快速幂
上式可以转化: 1^1 + 1^8 +1^15+……+1^(1+7*k) = 1^1( (1^7)^0+ (1^7)^2+……+(1^7)^k)求公比为1^7的等比数列前k项和
同理:求出以2^7、3^7、4^7、5^7、6^7为公比等比数列前k项和
方法一代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
using namespace std;
const int mod = 7;
int a[300]={0};
char str[10][10] = {"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"};
int fast_pow(int a,int n)
{
int ans = 1;
while(n)
{
if(n&1)
ans = ans * a%mod;
a = a*a %mod;
n /= 2;
}
return ans;
}
void init()
{
int sum = 0;
for(int i = 1;i <= 294;i++)
{
int k = fast_pow(i,i);
sum = (sum + k) % 7;
if(sum == 0) sum = 7;
a[i] = sum - 1;
}
a[0] = a[294];
}
int main()
{
int N,T;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
printf("%s\n",str[a[N%294]]);
}
return 0;
}
方法二代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
using namespace std;
const int mod = 7;
char str[10][10] = {"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"};
int fast_pow(int a,int n)
{
int ans = 1;
while(n)
{
if(n&1)
ans = ans * a%mod;
a = a*a %mod;
n /= 2;
}
return ans;
}
int fun(int a,int b)
{
int s,t;
if(b==0) return 0;
if(b==1) return a%mod;
s=fun(a,b/2)%mod;
if(b&1)
{
t=fast_pow(a,b/2+1)%mod;
return (s*(t+1)+t)%mod;
}
else
{
t=fast_pow(a,b/2)%mod;
return (s*(t+1))%mod;
}
}
int main()
{
int N,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
int t = N / 7;
int sum = 0,ans = 0;
if(t > 0)
{
for(int i = 1; i < 7; i++)
{
int w = fast_pow(i,7);
int x = fast_pow(i,i);
ans = (1 + fun(w,t-1))%mod;
ans = ans * x % mod;
sum = (sum + ans)%mod;
}
}
for(int i = t * 7 + 1; i<=N; i++)
sum = (sum + fast_pow(i%mod,i))%mod;
if(sum == 0) sum = 7;
sum -= 1;
printf("%s\n",str[sum]);
}
return 0;
}