ReentrantLock:
先简单讲下ReentrantLock里面的成员变量。
(1)int state:用于分辨当前锁是否已经被锁上
1)state=0: 未上锁
2)state>=1:已上锁,并且state>=1时记录的时重入锁的次数
(2)Node head:引用始终指向获得了锁的节点,它不会被取消。acquire操作成功就表示获得了锁,acquire过程中如果中断,那么acquire就失败了,这时候head就会指向下一个节点。
(3)Node tail:尾节点,用于线程快速如队列
1. 构造器
先阐述公平锁和不公平锁的定义
公平锁(Fair):加锁前检查是否有排队等待的线程,优先排队等待的线程,先来先得
非公平锁(Nonfair):加锁时不考虑排队等待问题,直接尝试获取锁,获取不到自动到队尾等待
(1)默认是构造一个不公平的锁。
public ReentrantLock(){
sync = new NonfairSync();
}
(2)为true时,构造公平锁;为false时,构造不公平锁。
public ReentrantLock(boolean fair){
sync = fair ? new FairSync() : new NonfairSync();
}
2. lock方法
lock方法针对 fair 和 nonfair 是有不同的实现的,在下面的代码的实现在于 sync 是属于哪个锁
public void lock() {
sync.lock();
}
(1)对于NonfairSync.lock() 的实现如下
1) 上锁接口
final void lock() {
//compareAndSetState,使用cas线程安全的把state的值更改为1, 当state=0时,代表没有上锁
if (compareAndSetState(0, 1))
//设置锁的专属对象是当前线程
setExclusiveOwnerThread(Thread.currentThread());
else
//如果cas操作失败时,调用acquire方法尝试上锁
acquire(1);
}
2) 申请锁
public final void acquire(int arg) {
// tryAcquire 尝试快速上锁 =>3)
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //快速上锁失败后调用acquireQueued方法把当前线程加入队列,并返回acquireQueued中是否产生过拦截
//acquireQueued中产生拦截,则调用线程中断方法
selfInterrupt();
}
非公平锁
1)尝试快速上锁
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
//state=0时代表未上锁
if (c == 0) {
//可上锁时,使用cas操作,线程安全的设置当前锁状态
if (compareAndSetState(0, acquires)) {
//设置锁所属线程 为当前线程
setExclusiveOwnerThread(current);
return true;
}
}
//当前线程就是拥有锁的线程,所以为重入锁
else if (current == getExclusiveOwnerThread()) {
//重入锁记录 上锁次数
int nextc = c + acquires;
//上锁次数溢出,重入次数太多,在改变状态之前抛出异常以确保锁的状态是正确的
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
//修改锁状态,不需要cas,因为属于同一个线程
setState(nextc);
return true;
}
return false;
}
2) addWaiter: 在当前等待队列添加成员
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
//如果尾部节点存在
if (pred != null) {
node.prev = pred;
// cas线程安全 设置队列尾部等待线程为当前线程
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//如果尾部节点不存在,则通过死循环插入队列
enq(node);
return node;
}
3) 插入当前线程到 锁等待队列上
private Node enq(final Node node) {
//直到成功才结束
for (;;) {
Node t = tail;
// 尾部节点为空,case线程安全的设置头节点为当前节点,同时设置尾节点。不然,继续在尾部添加node
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
4) 在所等待队列中分配锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
// 是否产生中断
boolean interrupted = false;
for (;;) {
// 获取候锁队列的前一个节点
final Node p = node.predecessor();
// 如果node节点的前一个节点p == head,并且tryAcquire为当前线程拿到锁,则分配锁成功
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 请求锁失败时,使用shouldParkAfterFailedAcquire判断是否要中断当前线程,需要中断当前线程则调用parkAndCheckInterrupt产生一次中断
/**线程的thread.interrupt()方法是中断线程,将会设置该线程的中断状态位,即设置为true,中断的结果线程是死亡、还是等待新的任务或是继续运行至下一步,就取决于这个程序本身。线程会不时地检测这个中断标示位,以判断线程是否应该被中断(中断标示值是否为true)。它并不像stop方法那样会中断一个正在运行的线程。*/
if (shouldParkAfterFailedAcquire(p, node)
&& parkAndCheckInterrupt())
interrupted = true;
}
} finally {
// 分配失败,要取消当前线程的锁请求
if (failed)
cancelAcquire(node);
}
}
5) 请求锁失败时,是否中断当前线程,这里首先要了解Node的waitStatus的定义
class:AbstractQueuedSynchronizer.Node
/** waitStatus value to indicate thread has cancelled:当前线程已注销 */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking:当前线程的继承者(后继线程)需要唤醒*/
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition:当前线程在等待Condition唤醒*/
static final int CONDITION = -2;
/**
* waitStatus value to indicate the next acquireShared should:暂时不看
* unconditionally propagate
*/
static final int PROPAGATE = -3;
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
//前一个线程的状态
int ws = pred.waitStatus;
//当前线程需要唤醒
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
//前一个线程已经注销,所以在前一个线程以前往前寻找没有注销的线程,并且把找到的线程的下个节点设置为当前线程
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/* 前一个线程等待状态为-2或-3,cas线程安全的设置前一个线程的状态为SIGNAL,即当前线程需要唤醒
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
6) 中断并且检查线程有没有中断
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
7) 注销线程对锁的请求
/**
* Cancels an ongoing attempt to acquire.
*
* @param node the node
*/
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)
return;
node.thread = null;
// 向前回溯,跳过取消的前继节点,直到找到一个没有取消的节点(注意:这里跳过的节点都是无效节点,其实可以从队列中移除),并使当前节点的前继节点指向它,此时找到的那个节点的后继节点没有改动
// Skip cancelled predecessors
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other threads.
//设置当前节点为取消状态
node.waitStatus = Node.CANCELLED;
//当前节点就是尾节点,则直接清除尾节点,设置前一个节点的后继节点为null,取消完成
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// 如果后继节点需要唤醒,先从设置前继节点的指向入手。如果前继节点不是头节点时,因为前继节点之后到当前节点(node)直接的节点都是被跳过了(节点已取消),所以如果pred的waitStatus如果是SIGNAL状态,意味着node的下个节点会唤醒,所以把pred的下个节点设置为node的下个节点,同时也完成了node节点的取消操作。
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
//上面尝试没完成后,直接唤醒后继节点
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
8). next指向非null的下一个节点,在同步队列中等待的节点,入队操作时设置了前一个节点的next值,这样可以在释放锁时,通知下一个节点来获取锁
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
//找到后面第一个没有被取消的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//唤醒后继线程
LockSupport.unpark(s.thread);
}
FairSync:公平锁
(1) 上锁
final void lock() {
//和非公平锁(NonfairSync)不一样的是,没有快速上锁(抢锁)的机制(compareAndSetState)
//acquire 和 NonfairSync 一样,都是通过 AbstractQueuedSynchronizer 的acquire 去实现上锁
//但是对于tryAcquire的实现机制又有不同
acquire(1);
}
(2)尝试获取锁
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//和NonfairSync不同的是,多了一个 hasQueuedPredecessors 的判断当前队列是否有等待更久的线程
if (!hasQueuedPredecessors() &&
// cas 更改锁状态,返回true 则成功获取锁
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
(3)判断当前队列是否有 正在工作的节点 或 等待更久的线程,有就返回true
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}