一,删除排序数组中的重复项 II
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素最多出现两次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。
示例 1:
给定 nums = [1,1,1,2,2,3],
函数应返回新长度 length = 5, 并且原数组的前五个元素被修改为 1, 1, 2, 2, 3 。
你不需要考虑数组中超出新长度后面的元素。
示例 2:
给定 nums = [0,0,1,1,1,1,2,3,3],
函数应返回新长度 length = 7, 并且原数组的前五个元素被修改为 0, 0, 1, 1, 2, 3, 3 。
你不需要考虑数组中超出新长度后面的元素。
二,方法:双指针
原地删除肯定是双指针,一个指向遍历的元素,一个指向可以写入的位置,后者的大小是小于等于前者的,关键在于题目条件的转化,如何实现限制最多两次的重复出现。 我们先不考虑边界情况,只考虑中间的情况,假设当前遍历位置为j,写指针的可写入位置为current+1,对于j处的值,其写入的条件是重复小于等于2次,我们考虑已经写入的最后两位current和current-1,这两个位置的情况有两个,相等和不相等,首先考虑相等的情况,此时若i处的值和current-1或者说current处的值相同,那么,i处的值肯定不能加入;然后考虑不相等的情况,即current-1和current处值不相等,那么i处的值无论为什么,都满足题意的,即可以加入,综上所述,当j处的值与current-1处的值不相等时,i处的值可以加入,其他情况均不能加入。 接着考虑边界情况,我们只需要考虑开始即可,开始时,前两个值无论等还是不等,都要原封不动的挪到新数组里,由于新数组就是在原数组上进行修改的,因此前两位直接不动即可,只需要修改遍历指针和写入指针就行。 以上算法只需要进行一次遍历即可,时间复杂度O(n),空间复杂度O(1)。
三,实现
int removeDuplicates(int* nums, int numsSize){
if(numsSize <= 2)
return numsSize;
int i = 1;
int j;
for(j = i + 1; j < numsSize; j++)
{
if(nums[i - 1] != nums[j])
{
nums[++i] = nums[j];
}
}
return i + 1;
}
四,后续
与删除排序数组中的重复项不同的是,需要识别出两个与超出两个的重复项。
数组完成排序后,我们可以放置两个指针 i 和 j,其中 i 是慢指针,而 j是快指针。只要nums[i] == nums[j],第一次进来,表示nums[j] 与nums[i] 相等,这是该数的第二次重复,所以需要添加进数组,nums[j]赋值给nums[i+1],以后有第三次,甚至多次,我们就增加 j 以跳过重复项。设置一flag,第一次进来有重复时,将flag 清0。第三次甚至多次就不会再赋值。
当我们遇到 nums[j]≠nums[i],跳过重复项的运行已经结束,因此我们必须把它(nums[j])的值复制到 nums[i+1]。然后递增 i,接着我们将再次重复相同的过程,直到 j 到达数组的末尾为止。需要将flag 重新设为 1,以便下次重新判断新数是否重复。
int removeDuplicates(int* nums, int numsSize){
if(numsSize == 0)
return 0;
int i = 0;
int j;
int flag = 1;
for(j = 1; j < numsSize; j++)
{
if(nums[i] != nums[j])
{
nums[++i] = nums[j];
flag = 1;
}
else
{
if(flag == 1)
{
nums[++i] = nums[j];
}
flag = 0;
}
}
return i + 1;
}